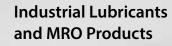
CATALOGUE OF PRODUCTS

SELECTED RANGE

Equipment Monitoring

Mechanical Seals



Packing and Gaskets

Polymer Seals

Industrial Coatings

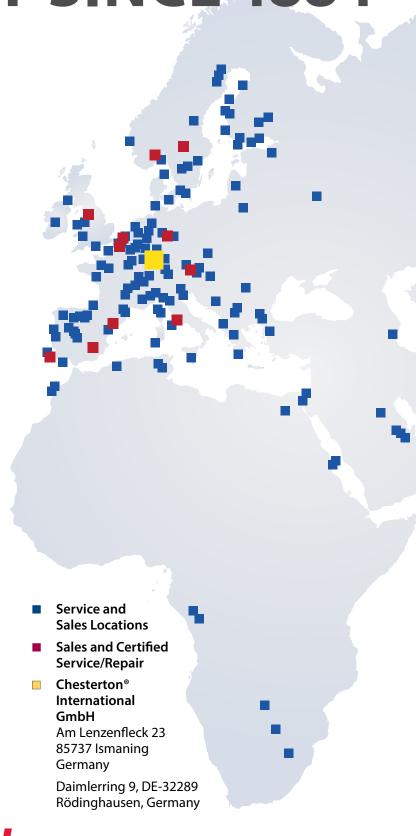
¥ 2 2

PROVIDING VALUE TO INDUSTRY SINCE 1884

A.W. Chesterton Company is a leading international manufacturer and distributor of five distinct product lines. Each product line is positioned to provide value-driven solutions to meet industry needs.

Since 1884 we have worked closely with our customers to provide solutions that help them operate more reliably, efficiently, and economically.

A.W. Chesterton Company is ISO 9001:2008 and ISO 14001:2004.


Chesterton[®] in Europe, the Middle East, and Africa

Chesterton has been using high performance materials, formulations, and designs to solve your toughest industrial applications. We provide value-driven solutions with documented success and recognition across Europe, the Middle East, and Africa.

Local Service

The expertise of your local Chesterton Technical Specialist combined with the support of our engineering staff will enable you to enjoy significantly reduced operating costs, increased reliability, and years of trouble-free service.

This catalogue provides you with an overview of the products and services that Chesterton offers in Europe, the Middle East, and Africa. For more information about our full range of products and services, visit our web site at **chesterton.com.**

TABLE OF CONTENTS

EQUIPMENT MONITORING

Chesterton Connect™
Chesterton Connect [™] Sensors

cotter torr connect	
Chesterton Connect™	Sensors4
Chesterton Connect™	Cloud5
Chesterton Conncet™	Gateway5

MECHANICAL SEALS

MS Application Guide
1810
2810
Cassette Seals
S109
S209
Split Seals
442™C10
442PR11
442M 11
Cartridge Seals
150
250
Gas Seals
4400
Slurry Seals
170 / 170 ISO / 170L 13
Component Seals
491 DINS / 491 DINL 14
Seal Support Systems
Flow Guardian [™]
Intelli-Flow™ HT
Water Saving System (WSS)
Buffer Support System (BSS)
Pressure Support System (PSS) 16
SpiralTrac [®] 17

PACKING AND GASKETS

Pump and Valve Packing and	
Gaskets Application Guide	19
Pump Packing	
DualPac [®] 2211	
DualPac [®] 221220 –	21
1935	22
1730	
1760	22
1765	
1830	
1400R	23
1830-SSP	24
SuperSet [™]	24
CMS 2000	24
Valve Packing	
1622™	25
1724	25
Sealing Soultions for	
Rotating Equipment	27
1600	
1724	
5800	30
Flange Live Loading	
5500	
5505L	
5505H	28
Valve Live Loading	
5150	
5800 Kit	29
Semi Metal Gaskets	
Camprofile	31
Sheet Gaskets	
Duragraf F	
Duragraf T	31
459	32
455EU	32
553	32
ECS-T	
Ancillary Products	33

POLYMER SEALS

SpeedSeal Service Centres
Product Selection Guide
Sealing Technology
Polymer Materials
AWC800 40
AWC808 41
AWC825 41
AWC860 41
Wiper Seals
W21K / CW21K 42
WCCS 42
Rod Seals
R11K 43
R8K™ / R27K / R28K
R22KN
R22K
R23K / P23K
R20K [™]
RCCS
Piston Seals
P8K [™] / R27K / P28K
P11K
P22KN
P22K
P20K [™]
PCCS
Ancillary Devices
16K/17K
9K
18K/19K
WR
Static Seals
20KD
Bearing and Gearbox Protection
Matrix Rotary Seal
30K
33K
Rotary Seals
50K
51K
52K
52K
B22KN5
30KC
30KC
14N aliu 14NL

INDUSTRIAL LUBRICANTS AND MRO PRODUCTS

Product Selection Guide
Liquid Lubricants
601(E)
607(E) HTS60
610 Plus / 610MT Plus / 610HT(E) 61
650 AML 61
690 FG(E) 61
715(E)62
652(E)
Greases
61562
635 SXC63
625(E) CXF, 630 SXCF63
Lubri-Cup [™] OL 500 Oiler63
Lubri-Cup™VG Mini
Thread Lubricants/Anti-Seizes
785(E) / 785 FG 64
783(E)
725(E)
Penetrating Oil
706(E)
723(E) and 723FG(E)
Thread Sealing
800
Flange Sealing
860
00007

INDUSTRIAL LUBRICANTS AND MRO PRODUCTS (CONT.)

Water-Based Alkaline Cleaners	
803(E)	67
360(E)	68
KPC 820(E)	
218(E)	68
235(E)	69
Water-Based Acid Cleaners	
338(E)	69
346(E)	
Solvent Based Cleaners	
274(E)	70
Contact Cleaners	
276(E)	70
Recirculating Metalworking Fluid	s
372(E)	71
Non-Recirculating Metalworking	Fluids
388	
Corrosion Control	
775(E)	72
740(E)	72

INDUSTRIAL COATINGS

Product Application Guide74-	-75
Erosion Resistant Coatings	
for Metals	
855(E)	
858(E)	76
HT-T(E)	77
HT-S(E)	77
Coatings for Corrosion, Erosion,	
and Chemical Attack for Metals	
S1PW	77
S2(E)	78
S4+(E)	78
S7	
Abrasion Resistant Coatings	
for Metals	
BX1(E) / BX2(E)	79
I BX1(E)	80
T7 AR	80
Resurfacing Coatings for Concrete	
791(E)	81
988(E)	81
Thin Film Coatings for Concrete	
CS2(E) / CS4(E)	82
NVE System	82
S1HB(E)	
Ceramic-Polymer Coatings	
Beta 8016 / 8010	83
STP-EP HV / STP-EP	84
SF/LF	84
CN 200	
CN-1M / CN-OC	
169 (37)	
Ancillary Products	

PRODUCT APPROVALS AND CERTIFICATIONS

Certifications	
IL and MRO Products87	- 90
Mechanical Seals	91
Compression Packing	91
Flange Gaskets	92
Fluid Power – Raw Materials	
ARC	93
Ceramic Polymer	93

EQUIPMENT MONITORING

Chesterton Connect[™]

Simplified Equipment and Process Monitoring For Pumps And Sealing Systems

Chesterton Connect is a simple to use data acquisition tool that enables you to safely and conveniently monitor your process and equipment's operating conditions. Utilizing Bluetooth[®] technology and a robust design to withstand harsh environments, Chesterton Connect makes it easy to monitor:

- Equipment vibration
- Surface temperature
- Process temperature
- Process pressure
- Sensor Version and Certifications

Sensor v1.0 Product ordering number: 403700

<mark>Sensor IS (Intrinsically Safe)</mark> Product ordering number: 403699

2	IP66, NSF61, CE, FCC, IC, RoHS, VCCI, RCM		
	Hazardous I	Hazardous Ratings	
ATEX/IECEx Zone Division Rated Temp	🐵 II 1 G Ex ia IIB T4 Ga		
	ATEX/IECEX	🐵 II 1 D Ex ia IIIB T ₂₀₀ 166°C Da	
	Zone	Class I Zone 0 AEx ia IIB T4 Ga	
		Zone 20 AEx ia IIIB T166°C Da	
	Division	Class I Div 1 Groups C D T4	
		Class II Div 1 Groups F G T4	
	Rated Temp	$-20^{\circ}C \le Ta \le +85^{\circ}C$	

Operating Pa	arameters	Software Featu	ires
Pressure Sensor Limit	-1 bar g – 68 bar g (-14.7 psig –1000 psig)	Security	Encrypted setup and password protected operation
Temperature Limit (body)	-20°C – 85°C (-4°F – 185°F)	Personalization	Configurable name and usage information
Temperature limit (sensor)	-20°C – 125°C (-4°F – 257°F)	Data Acquisition	Monitoring mode for extended battery life (5-minute intervals)
Vibration Sensor	3-axis accelerometer ±16g		and high accuracy mode for troubleshooting (1-minute intervals)
Battery	3.6V lithium thionyl chloride battery (replaceable)	Data Storage	Up to 30 days of rolling history
Fitting	1/4" NPT 17-4PH connection	Alerts	Configurable thresholds and alerts
Mount	Magnetic mounting base	Analytics	Time plotted trends and analysis
		Data Export	Email export of sensor data and alarms

Sensor v1.0

Chesterton Connect

- Easy to install and configure
- Early detection of process instabilities
- Prioritize equipment maintenance
- Securely access your data
- View multiple sensors in one mobile app
- Replaceable battery

Chesterton Connect[™] Cloud

Monitor, Analyze, and Compare Equipment Health from Wherever You Are*

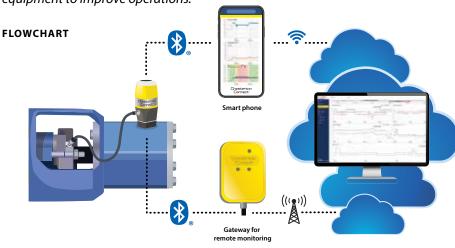
The Chesterton Connect Cloud provides a powerful window into the health of all equipment monitored by Chesterton Connect devices.

From wherever you are on a 24/7 basis, view overall performance, explore variances and trends, add notes, and take action to increase uptime and productivity.

Chesterton Connect Cloud allows you to:

- Spot trends to address potential threats to uptime
- Pinpoint issues causing difficult-to-uncover failures
- Predict potential problems to help lower maintenance costs
- Easily modernize plant operations

Software Features		
Security	24/7 security, authentication, and backup of data	
Personalization	Flexible management of user roles, permissions, and reports	
Data Storage	Unlimited storage of Chesterton Connect measurements, alarms, and notes	
Data Visualization	Simple to navigate graphs, alarms, and notes	
Analytics	Time-plotted trends and events	
Reports	Easily print asset reports	
Access	Global access to unlimited sensors	


- Set alert notifications by equipment
- Correlate multiple measurements for a specific time
- Quickly overlay and compare data for multiple pieces of equipment
- Compare vibration against published standards
- Produce equipment performance reports easily

*Internet connectivity required.

Chesterton Connect[™] Gateway

Automated Data Transfer for 24/7 Remote Monitoring

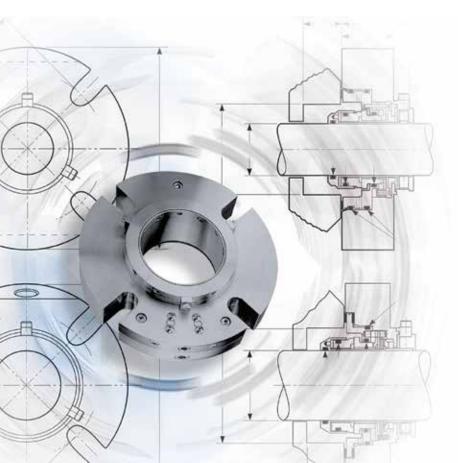
Chesterton Connect Gateway enables automatic data transfer for pumps and sealing systems monitored by Chesterton Connect sensors. Utilizing the Chesterton Connect Cloud, the Gateway facilitates remote monitoring of equipment to improve operations.

Ask a Chesterton product specialist, or contact connect.support@chesterton.com for more details.

- Easy to install
- Automatically connects to cellular networks
- Supports up to 50 sensors
- Plug-and-play design
- Simplifies condition monitoring scalability

MECHANICAL SEALS

SERVICE AND PERFORMANCE


Unparalleled in Industry

At Chesterton, we emphasize working together as partners to provide knowledgable solutions. Our high service levels are delivered by combining both industry and product knowledge with experience to implement Best Available Techniques. Our wide geographical reach and local service capabilities enable us to be responsive to your needs.

Reliability Through Innovation

To be a full-service provider takes a wide array of high quality, engineered sealing products that address your needs. Innovative, high performance products are the core of Chesterton's offerings as a premier sealing solution provider. Some of our standard offerings are:

- Split Seals
- Cartridge Seals
- Gas Seals
- Component Seals
- SpiralTrac[®]

Improving Productivity with High-Impact Programs

In today's global economy, our clients are faced with increased profitability pressures. Chesterton can assist users in achieving their productivity goals by improving asset reliability and lowering the total cost of ownership. Our programs are easily customized for each plant to:

- Improve equipment reliability
- Increase process throughput
- Lower total cost of ownership

Delivering Results for Industry

Meeting industry needs requires a thorough knowledge and understanding of the key drivers specific to a plant. Chesterton's depth of experience allows us to deliver results such as:

- Increased equipment reliability
- Reduced water consumption
- Reduced environmental emissions
- Increased energy efficiency

Mechanical Seals Application Guide

Please contact your local	Model	Equipment Types		Fit					Duty			
Chesterton Representative to help you select the best product for your application.			ISO-3069-S	SO-3069-C	EN-12756	Light Duty	Large Equipment	Solids	Crystallising Media	Emissions Control	Corrosive Media	High-Temperature
Split Seals		Pumps	-			_		0/				_
Why disassemble the equipment?	442C	Agitators				√+	√ ++	√+*	~		✓	1
Chesterton's split mechanical seals offer a reliable sealing solution by		Mixers				-	••					
reducing maintenance costs for larger equipment that is difficult and time-consuming	442M	Agitators					√ ++	√+*	✓		✓	
to disassemble.	442PR	Mixers Boiler Feed	✓				√ ++	\checkmark			✓	√+
		Pumps	·									,.
Cassette Seals All the wearing parts are contained in a single, replaceable cassette unit. Single and doublel cassettes share a common universal gland. Repair becomes a matter of exchanging cassettes, making it faster and easier while significantly reducing costs associated with repair.	S10	Pumps	✓	✓		√+	✓	✓	√+	√+	√ ++	✓
	S20	Pumps	√	1			1	√+	√+	√++	√+	√++
Cartridge Seals	150	Pumps	\checkmark	\checkmark		√ ++	\checkmark	\checkmark	\checkmark		\checkmark	
Cartridge Seals have been designed to be rugged	250	Pumps	\checkmark	\checkmark			\checkmark	\checkmark	√ +	\checkmark	\checkmark	
performers in sealing applications across industry	170	Pumps		\checkmark			√+	√ ++	√+		√+	
segments. They are proven performers for plant-wide	1810	Pumps	\checkmark	\checkmark		✓	√+	√+	√ ++	√+	√+	\checkmark
standardization by providing maximum reliability.	2810	Pumps	\checkmark	\checkmark			√+	√+	√ ++	√++	√++	
	2810M	Agitators Mixers					√ ++	√+*	✓		✓	√ ++
Gas Seals Chesterton gas seal technology overcomes performance limitations common to double liquid cartridge seals. Reach your plant reliability goals with the addition of simple gas seal technology.	4400	Pumps		~				√+	~	√++	√+	√ ++
Component Seals		Pumps	\checkmark		\checkmark							
Fits all DIN, ISO, ANSI, and other popular pumps, no shaft sleeve wear, self-aligning, stationary compatible. All wearing parts, seal faces, O-Rings, screws, and springs are replaceable at low cost.	491DINS 491DINL	Agitators				√+	✓	√+	√+			

*Solids handling capability enhanced by use of SpiralTrac split environmental controller

√++ = Best Choice

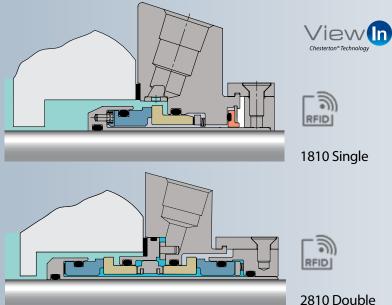
√+ = Better Choice

 \checkmark = Good Choice

20

MECHANICAL SEALS

1810 & 2810 Heavy-Duty Modular Cartridge Seals


Built on Chesterton's AXIUS™ modular platform customizable to meet plant-wide applications

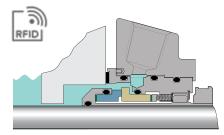
The 1810 and 2810 seals offer many user-scalable features, including different faces profiles and a range of auxiliary components, which allows performance to be tailored to the plant-wide range of process conditions.

Operating C	onditions	Materials	
Sizes	25 mm – 200 mm (1" – 8.00")	Faces	Rotary: CB, SSC, TC Stationary: SSC, TC
Pressure	711 mm (28") Hg Vacuum 1810: 40 bar g (600 psig)* 2810: 40 bar g (600 psig)* inboard, and to 17 bar g (247 psig) outboard	Elastomers	FKM, EPDM, FEPM, FFKM
Temperature	-55°C – 300°C (-67°F – 570°F) Temperature limits depend on actual elastomers	Metals	316 Stainless Steel (EN 1.4401) 2205 – Duplex (EN 1.4462) 2507 – Super-Duplex (EN 1.4410) Alloy C-276 (EN 2.4819)
Speed	25 m/s (5000 fpm)	Springs	Alloy C-276 (EN 2.4819)

* Seal pressure capabilities are dependent on the fluid sealed, temperature, speed, and seal face combinations. For operation outside the limits and additional materials consult Chesterton Mechanical Seal Engineering.

- Simplifies configuration and maximizes seal performance
- Upgradable with Chesterton Connect, for monitoring seal's operating conditions such as pressure, temperature, and vibrations
- Increases face life and reduces contact stress with cushioned drive pins
- Allows for easy, positive seal identification with ViewIn[™] RFID

- **5 Key Seal Design Features**
- ✓ Balanced Design
- ✓ Non-Fretting
- ✓ Monolithic Seal Faces
- ✓ Protected Springs
- ✓ Stationary Design (1810)/ Unified Seal Alignment (2810)



CASSETTE SEALS

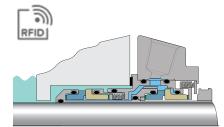
S10

High Performance Single Cassette Seal

A unique, modular cassette that combines advanced seal technology with flexibility in maintenance and repair.

ΚM

	Operating C	onditions	Materials	
	Sizes	25 mm – 120 mm (1" – 4.75")	Fa ces	CB, SSC, TC
	Pressure	711 mm (28") Hg Vacuum – 31 bar g (450 psig)	Elastomers	FKM, EPDM, FEPM, FF
	Temperature	-55°C – 300°C (-67°F – 570°F)	Metals	1.4401 (316SS)
	Speed	25 m/s (5 000 fpm)	Springs	2.4819 (Alloy C-276)
Ī	Fits ISO-3069	9, ASME B73.1, B73.2		


- High performance sealing
- One optimized sealing concept for plant-wide standardization
- Easy to maintain
- Allows for easy, positive seal identification with ViewIn[™] RFID

S20

High Performance Double Cassette Seal

A unique, modular cassette that combines advanced seal technology with flexibility in maintenance and repair.

_				
	Operating C	onditions	Materials	
	Sizes	25 mm – 120 mm (1" to 4.75")	Fa ces	CB, SSC, TC
	Pressure	711 mm (28") Hg Vacuum – 31 bar g (450 psig) 17 bar g (250 psig) inboard differential	Elastomers	FKM, EPDM, FEPM, FFKM
	Temperature	-55°C – 300°C (-67°F – 570°F)	Metals	1.4401 (316SS)
	Speed	25 m/s (5 000 fpm)	Springs	2.4819 (Alloy C-276)
1	Fits ISO-3069	9, ASME B73.1, B73.2		

RFID Technology: More details in our ViewIn video: chesterton.com

Standards and approvals available on page 91.

- Advanced sealing performance
- One optimized sealing concept for plant-wide standardization
- Easy to maintain
- Allows for easy, positive seal identification with ViewIn[™] RFID

/iev

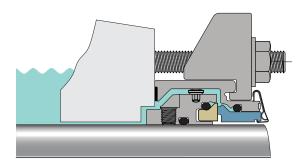
MECHANICAL SEALS

442C[™]

Cartridge Split Mechanical Seal

Innovation on the inside!

The 442C[™] Cartridge Split Mechanical Seal is the latest innovation in split seal technology combining superior performance with the ease of installation of a cartridge split seal.

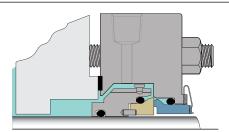

Operating Cond	ditions	Materials	
Sizes	25 mm – 195 mm (1.000" – 7.750")	Faces	CB, CR, RSC
Pressure	711 mm (28") Hg Vacuum – 30 bar g (450 psi) from 125 mm (4.875") 14 bar g (200 psig)	Elastomers	FKM, EPDM, FEPM, FFKM
Temperature Limit	120°C (250°F)	Metals	1.4401 (316SS)
Speed	up to 20 m/s (4 000 fpm)	Springs	Elgiloy®

Seal pressure capabilities are dependent on the fluid sealed, temperature, speed, and seal face combinations.

442 versions are available for large diameters up to 600 mm.

- Simplified split seal installation without equipment disassembly
- Innovative design with superior performance
- Fits majority of rotating equipment
- Easy field repair

More details in our 442C™ video: chesterton.com



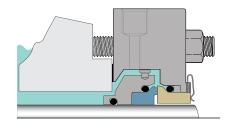
SPLIT SEALS

442PR

Split Pumping Ring Seal

The high-capacity pumping ring provides for maximum heat removal and reliability in hot water services such as heater drain.

Operating C	onditions	Materials	
Sizes	32 mm – 195 mm (1.25" – 7.75")	Faces	CB, RSC
Pressure	711 mm (28") Hg Vacuum – 30 bar g (450 psi)	Elastomers	FKM, EPDM, FEPM
Temperature Limit	120°C (250°F)	Metals	1.4401 (316SS)
Speed	20 m/s (4 000 fpm)	Springs	Elgiloy®


 Advanced technology that is easy to install and to operate

- High-flow pumping device designed for API Plan 23
- Compact design for greater equipment fit

442M

Split Mixer Seal

The mixer version of the 442 split seal accommodates large radial shaft motion associated with mixers, agitators, reactors, and blenders.

Operating Condi	tions	Materials	
Sizes	38 mm – 190 mm (1.5" – 7.5")	Fa ces	CB, RSC
Pressure*	711 mm (28") Hg Vacuum – 15 bar g (225 psi)	Elastomers	FKM, EPDM, FEPM
Temperature	120°C (250°F)	Metals	1.4401 (316SS)
Speed	20 m/s (4 000 fpm)	Springs	Elgiloy®

Runout Motion Capabilities					
442M Size Range	Total Indicated Runout	Axial Movement			
<60 mm (2.500")	2,3 mm (0.090")**	+/- 0,76 mm (0.030")			
<190 mm (7.500")	3,8 mm (0.150")	+/- 1,52 mm (0.060")			

ATEX Category I, group 2 approved

* Seal pressure capabilities are dependent on the fluid sealed, temperature, speed, and seal face combinations.

** See Radial Motion vs Pressure Capability curves in 442M Installation Instructions.

- Advanced technology that is easy to install and operate
- Innovative design with superior performance
- Uses many patented features allowing for easy and cost-effective field repair

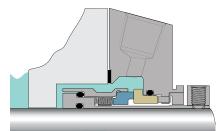
MECHANICAL SEALS

CARTRIDGE SEALS

150

General Purpose Cartridge Single Seal

Designed for baseline applications and for upgrading packed or component-sealed equipment—this seal is a value leader in its class.


25 mm - 120 mm (1" - 4.75")

711 mm (28") Hg Vacuum

– 20 bar g (300 psig)

20 m/s (4 000 fpm)

Temperature -55°C – 300°C (-67°F – 570°F)

CB, SSC,

1.4401 (316SS)

2.4819 (Alloy C-276)

FKM, EPDM, FEPM, FFKM

Materials

Elastomers

Fa**ces**

Metals

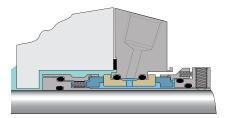
Springs

- Simple upgrade to reduce plant maintenance costs
- Reliable cartridge design that increases seal life

Fits ISO-3069, ASME B73.1, B73.2

Operating Conditions

Sizes


Pressure

Speed

7	
4	U

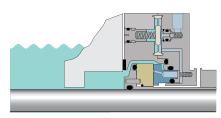
General Purpose Cartridge Double Seal

Designed for cost-effective upgrading from packing and underperforming single seals—this seal is a value leader in its class, further increasing plant reliability.

Operating C	onditions	Materials	
Sizes	25 mm – 120 mm (1" – 4.75")	Fa ces	CB, SSC,
Pressure	711 mm (28") Hg Vacuum – 20 bar g (300 psig) 10 bar g (150 psig) inboard differential	Elastomers	FKM, EPDM, FEPM, FFKM
Temperature	-55°C – 300°C (-67°F – 570°F)	Metals	1.4401 (316SS)
Speed	20 m/s (4 000 fpm)	Springs	2.4819 (Alloy C-276)

Fits ISO-3069, ASME B73.1, B73.2

- Provides sealing security that conventional single seals cannot match
- Reliable cartridge design that increases seal life



GAS SEALS

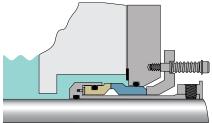
4400

Double Concentric Gas Seal

Advanced technology made simple in a gas seal design. The 4400 is a seal for all purposes and provides for an easy gas seal upgrade option. It is an ideal choice for upgrading underperforming, liquid lubricated seals to high performance, noncontacting operation.

	16
	F
	T
0	

- Delivers low cost-of-ownership for a broad range of applications
- Advanced technology that is easy to install and operate
- Exclusive In-Gland Control System eliminates the need and expense of an external gas panel
- Eliminates atmospheric emissions


Operating Conditions		Materials			
Sizes	25 mm – 90 mm (1.00" – 3.625")	Fa ces	CB, SSC		
Pressure	711 mm (28") Hg Vacuum – 20 bar g (300 psig)	Elastomers	FKM, EPDM, FEPM, FFKM		
Temperature	-55°C – 300°C (-67°F – 570°F)	Metals	1.4401 (316SS)		
Speed	25 m/s (5 000 fpm)	Springs	2.4819 (Alloy C-276)		

SLURRY SEALS

170 / 170 ISO / 170L

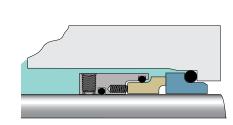
Slurry Cartridge Single Seal

Engineered to operate in harsh, heavy consistency slurry environments and to eliminate costly external seal flushes in the majority of applications. 170L version is designed to fit Warman[®] AH slurry pumps.

Operating Con	ditions	Materials			
Sizes	25 mm – 228 mm (1.00" – 9.00") 170 Version 40 mm – 110 mm (1.57" – 4.33") 170 ISO Version 50 mm – 220 mm (1.96" – 8.66") 170L Version	Faces	SSC, TC		
Pressure	711 mm (28") Hg Vacuum – 17 bar g (246 psig)	Elastomers	FKM, EPDM, FEPM, FFKM		
Temperature	-55°C – 300°C (-67°F – 570°F)	Metals	1.4401 (316SS)*		
Speed	11 m/s (2 200 fpm)	Springs	2.4819 (Alloy C-276)		

*Duplex and Super Duplex stainless steel available as an option

- Runs longer in heavy, abrasive slurries without the need for flush or quench water
- Reliable design that deals with real-life slurry pumping conditions
- Easy to maintain


MECHANICAL SEALS

COMPONENT SEALS

491 DINS / 491 DINL

DIN Component Seal

Designed for the replacement of low- technology component seals, resulting in increased overall reliability increase and maintenance efficiency. 491DINS: Non-slotted stationary face 491 DINL: Slotted stationary face

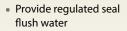
Operating Co	onditions	Materials	
Sizes	16 mm – 110 mm (0.625" – 4.375")	Fa ces	CB, S
Pressure	711 mm (28") Hg Vacuum – 10 bar g (150 psig)	Elastomers	FKM,
Temperature	-55°C – 300°C (-67°F – 570°F)	Metals	1.440
Speed	20 m/s (4 000 fpm)	Springs	2.481

Fits EN12756, ISO-3069-S

aterials	
ces	CB, SSC,
astomers	FKM, EPDM, FEPM, FFKM
etals	1.4401 (316SS)
orinas	2.4819 (Alloy C-276)

- Reliable upgrade from original equipment seals
- Designed not to fret shaft or sleeves
- Fits EN12756 L1K with standard supplied DIN stationary

SEAL SUPPORT SYSTEMS


Flow Guardian[™]

Pressure and Flow Regulator

Specifically designed to supply uninterrupted, regulated seal flush water and deliver operational efficiency to the pump population.

Managing flow rates while regulating important pressure differentials is possible. Costly seal failures are reduced while assisting in-plant water conservation initiatives.

Operating Parame	ters	Materials of Construc	tion
Flow Rate	0,1 – 3 l/min/2 -50 US gph	Flowmeter tube	Polysulfone (PSU)
Pressure Limit	711 mm (28") Hg Vacuum – 10 bar g (145 psig)	Body of unit	Polyoxymethylene (POM)
Temperature Limit	100°C (212°F)	O-Ring	Fluorocarbon (FKM)
		Pressure gage	Oil-filled with 316SS Stainless Case and Wetted
		Pressure and flow rate regulating valve	316 Stainless Steel/EN 1.4401
		Clean out plugs	320 – 3/8" Tube Fittings (for Compression Connections) 316 Optional Barb Fittings
		Mounting bracket	316 Stainless Steel/EN 1.4401

- Maintenance-free automatic level and pressure management
- Plan 54DM (DP50)
- Plan 32 and 33S (SP50)

Intelli-FlowTM HT

Water Saver

Features a thermally activated valve that automatically drains hot barrier fluid (only when necessary) to keep dual seals running cool and reliably. Valve opening temperature preset to work with S20 Seals.

Operating Conditions	
Pressure	20 bar g (300 psig)
Temperature Limit	125°C (257°F)
Temperature set point	80°C (176°F) for HT version, 60°C (140°F) for T-30 version
Connections	1/4 NPT
Materials	1.4401 (316SS)

- Clean in place
- Maintenance-free
- Easy to install
- 95% water savings compared to open barrier fluid supply (API Plan 54)

WSS

Water Saving System for Double Seals

Easy to install, complete solution with minimal water consumption for reliable operation of double mechanical seals.

Designed to maintain water barrier pressure and levels without maintenance. Containing all the equipment required, the WSS is easy to install.

Technical Data		Components	
Tank Capacities	28 – 25 operating 12 – 9 operating	Water line connection	Rp 1/2" female
Operating Pressure	16 bar g (232 psig)	Pressure gauge	0 – 10 bar Brass (0 – 145 psig)
Tank Material	316 Ti/1.4571	Pressure regulator	0 – 10 bar Brass (0 – 145 psig)
Cooling Capacity	400W with 12 l tank / 1 kW with 28 l tank	Flow indicator	Stainless Steel
Auxiliary Connection	1 x R 1" and 1 x R 1/2"	Drain valve	R 1/2" - NiCr Plated Brass
		Hoses	Kit: 1 m and 1.5 m (39" and 59") Polyamide 12 mm (0.47") OD
		Seal Connections	Kit: 2 x NPT 1/2"S Straight Push-in – Connectors NiCr Plated Brass

PED (97/23/EC) - TÜV

Standards and approvals available on page 91.

- Preconfigured system and options
- Maintenance-free automatic level and pressure management
- Minimize seal support water usage
- Plan 53P automated water support tank

Mechanical Seals

MECHANICAL SEALS

BSS

Buffer Support System for Double Seals

Easy to install, complete, non-pressurized solution for reliable operation of double mechanical seals.

Complete solution for the environmental support of double mechanical seals where product contamination from support fluid cannot be tolerated.

Technical Data		Components	
Tank Capacities	28 – 25 operating 12 – 9 operating	Fluid line connection	Rp 1/2" female
Operating Pressure	16 bar g (232 psig)	Pressure gauge	0 – 10 bar Brass (0 – 145 psig)
Tank Material	316 Ti/1.4571	Level Gauge	Reflex Sight Glass
Cooling Capacity	400W with 12 l tank / 1kW with 28 l Tank	Fill valve	R 1/2" - NiCr Plated Brass
Auxiliary Connection	1 x R 2" and 1 x R 1/2"	Drain valve	R 1/2" - NiCr Plated Brass
		Hoses	Kit: 1 m and 1.5 m (39" and 59") Polyamide 12 mm (0.47") OD
		Seal Connections	Kit: 2 x NPT 1/2"S Straight Push-in – Connectors NiCr Plated Brass

PED (97/23/EC) - TÜV

PSS

Pressurized Support System for Double Seals

Easy to install, complete, pressurized solution, for reliable operation of dual mechanical seals.

Complete solution for the support of double mechanical seals where product leakage cannot be tolerated.

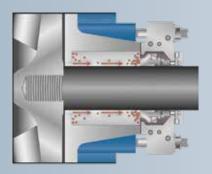
Technical Data		Components	
Tank Capacities	28 – 25 operating 12 - 9 operating	Fluid line connection	Rp 1/2" female
Operating Pressure	16 bar g (232 psig)	Pressure gauge	0 – 10 bar Brass (0 – 145 psig)
Tank Material	316 Ti/1.4571	Pressure regulator	0 – 10 bar Brass (0 – 145 psig)
Cooling Capacity	400W with 12 l tank / 1kW with 28 l Tank	Fill valve	R 1/2" - NiCr Plated Brass
Auxiliary Connection	1 x R 2" and 1 x R 1/2"	Drain valve	R 1/2" - NiCr Plated Brass
		Hoses	Kit: 1 m and 1.5 m (39" and 59") Polyamide 12 mm (0.47") OD
		Seal Connections	Kit: 2 x NPT 1/2"S Straight Push-in – Connectors NiCr Plated Brass
		Level Gauge	Reflex Sight Glass

PED (97/23/EC) - TÜV

- Runs longer in heavy abrasive slurries without the need for flush or quench water
- Reliable design that deals with real life slurry pumping conditions
- Easy to maintain

- Preconfigured system and options
- Maintenance-free automatic level and pressure management
- Minimize seal support water usage
- Plan 53P automated water support tank

SpiralTrac® Environmental Controllers


When used with Chesterton mechanical seals, SpiralTrac Environmental Controllers greatly enhance seal reliability by effective removal of solids and improved cooling of the stuffing box.

Versions	
F (Split)	Greatly reduced flush
N	Reduced/No flush in non fibrous fluids
D	Reduced/No flush in fibrous fluids
P (Split)	Packing version
с	With drain for crystallising media

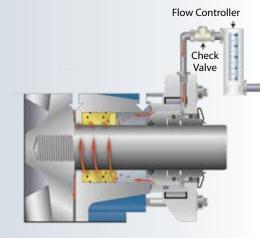
Available Materials

1.4401 (316SS) 416 SS PTFE – Glass-Filled PTFE – Carbon Graphite-Filled Bronze Ti/EN 3.7035 AWC800 – Red Polymer Monel® K400 / EN 2.4360

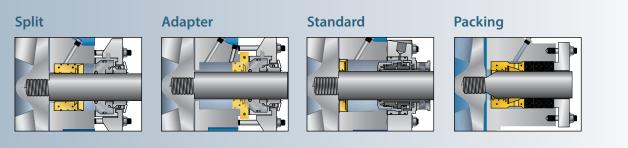
- Extends seal reliability in most rotating equipment applications
- Reduces cost of flushing in abrasive applications
- Fits all rotating equipment

Vented from cavity when pump is stationary (eliminates crystallisation,

(1) Air


coking, and overheating due to air)

(2) Circulation


Drives around coal (avgellant)

Driven around seal (excellent face cooling)

- (3) Exchange In and out of cavity (heat removed from cavity)
- Particulate Immediately removed from cavity through the exit groove, flush or no flush

Configurations Available

MEET ENVIRONMENTAL AND BUSINESS GOALS

Chesterton mechanical packing and gaskets enable our customers to meet their goals by offering the right product fit for every application on static equipment.

Value and Performance Programs

There are many different applications in a process plant and across industries. Critical applications need a top-quality performance packing, while a standard packing might be fully adequate for less demanding applications.

- High quality performance packing
- Standard packing range
- Solutions for every plant and industry
- Total cost focus

Reliability and Environmental Protection

Live loading for flanges and valves increases reliability and performance while reducing emissions and leakage by adjusting for system issues that affect packing performance.

Application-Specific Solutions

For some applications a plant-wide packing just won't do and some applications have requirements that need a unique solution. Chesterton has developed distinct products that allow the best performance for specific pieces of equipment and particular service conditions in a variety of industries. Examples are:

- Sootblower solutions for the power industries
- Solutions for solvent dewaxing units in the oil refining industry

Pump and Valve Packing and Gaskets Application Guide

	act your local representative		Me	dia			Duty		Ke	y Bene	efit			Ec	quipm	ent		
to help you s best product application. Family	select the t for your	Water	Steam	Chemicals	Food and Beverage	High-Temperatures	High-Pressures	High-Speeds	Reliability	Economy Solution	Emissions	Control Valves	Block Valves	Motor Operated Valves	Pipe Flanges	Heat Exchangers	Housings	Rotating Equipment
. anny					2			Ï				ů	ă	ž		Ť		Ro
	455EU	√ ++	\checkmark	√ +		√ +	√ +		√ +	√ ++	√ +				√ ++		√ ++	
	553	√ ++	√ +	√ +		√ +	√ +		√ ++	√ +	√ ++				√ ++		√ ++	
	Duragraf F	√ ++	√ ++	√ ++		√ ++	√ +		√ +	√ ++	√ +				√ ++		√ ++	
	Duragraf T	√ ++				√ ++	√ +		√ +	√ ++	√ +				√ ++	√ +	√ ++	
Flange Sealing	459	√ ++		√ ++		√ ++			√+	√+	√+				√+	√+	√ ++	
_	ECS-T	√ ++	√+	√ ++		√+	√+		√ ++		√ ++				√ ++		√ ++	
	Camprofile Gasket KG1/KR	√ ++	√ ++	√ ++		√ ++	√ ++		√ ++		√ ++				√ ++	√ ++	√ ++	
	Flange Live Loading		√ ++	√ ++		√ ++	√ ++		√ ++		√ ++				√ ++	√ ++	√ ++	
	1730	√ ++		√+		√+	√ ++	\checkmark	√ ++	√+								√ ++
	1760	√ ++		√ ++		√+	√ ++	√ ++	√ ++	√+								√ ++
	1765	√ ++		√ ++		√+	√+	√+	√ ++	√+								√ ++
	1830	√ ++		√ ++		√+	√+	√ ++	√+	√ ++								√ ++
	1830-SSP	√ ++		√ ++		√+	√+	√ ++	√+	√+								√ ++
Pump	1935	√ ++		√+	√ ++	\checkmark			√+	√+								√ ++
Packing	1400R	√ ++	√+	√ ++		√ ++	√+	√ ++	√ ++	√+	√+							√ ++
	DualPac 2211	√ ++		\checkmark		√+	√+	√+	√+	√ ++								√ ++
	DualPac 2212	√ ++		\checkmark	√ ++		√+	√ ++	√+	√ ++								√ ++
	CMS 2000 White	√ ++		√+						√ ++								√ ++
	CMS 2000 Food Grade	√ ++		√ ++	√ ++					√ ++								√ ++
	1600	√ ++	√ ++	√ ++		√ ++	√ ++		√ ++		√+		√ ++					
	1622		√+	√ ++		√ ++	√ ++		√ ++		√ ++		√ ++					
	1724	√ ++		√ ++			√+		√ ++		√ ++	√ ++	√ ++	√+				
	1724 low E			√ ++		√+	√+		√ ++		√ ++	√ ++						
Valve Packing	5800	√ ++	√ ++	√ ++		√ ++	√+		√ ++			√ ++						
-	5800E	√ ++	√+	√ ++		√ ++	√+		√ ++		√+	√ ++						
	5800T			√ ++		√+	\checkmark		√ ++		√+	√ ++						
	5300 Valve Live Loading			√ ++			√ ++		√ ++		√+		√ ++	√ ++				

√++ = Best Choice

✓+ = Better Choice

✓= Good Choice

PACKING AND GASKETS

DUALPAC[®] PACKING

Longer Packing Life, Reduced Maintenance

DualPac[®] 2211 Packing

>>> DualPac® Technology

Severe Slurry Packing

By inventing a new braiding process, Chesterton has successfully combined ePTFE and aramid fibres in a unique configuration, allowing low-friction fibres to seal the shaft and resilient fibres to provide strength and anti-extrusion benefits. Combined in this way DualPac 2211 packing provides all of the performance advantages of ePTFE and aramid without the compromises of traditional mixed fibre packing.

Operating Conditi	Materials	
Sizes	6,4 mm – 25 mm (1/4" – 1")	Graphited ePTFE
Pressure Limit	20 bar g (300 psig)	
Temperature Limit	Max 260°C (500°F)	
рН	3 – 11	
Speed	10 m/s (2 000 fpm)	
Applications	For use in ore slurries, mineral handling dewatering tailing pumps, and other slurry processing applications],

DualPac[®] 2212 Packing

High-Performance, Non-Staining, Multi-Purpose Packing

Chesterton DualPac 2212 packing is created using our patented DualPac technology which combines a burn-resistant material on the packing's shaft side with a highly resilient outer fibre.

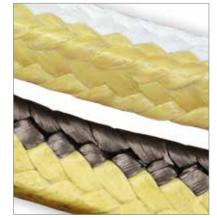
Operating Condit	ions	Materials
Sizes	6.4 mm – 25 mm (1/4" – 1")	Meta and para-aramid fibres
Pressure Limit	35 bar g (500 psig)	
Temperature Limit	Max 260°C (500°F)	
рН	3 – 11	
Speed	10 m/s (2 000 fpm)	
Applications	Water pumps, paper stock pumps, slurries, agitators, mixers	

- Achieves significantly longer packing life using patented DualPac packing technology
- Multiple configurations to eliminate the need for end rings
- Exclusive design using DualPac packing technology

- Glaze-resistant packing fibres
- High-pressure capability
- Exclusive design using non-staining DualPac packing technology

DUALPAC[®] TECHNOLOGY

Chesterton's new DualPac technology combines the best qualities and benefits of two different fibres to create an entirely new level


properties, but together they offer advanced levels of performance.

A New Level of Packing Reliability

of packing reliability. Individually these fibres have unique

DualPac

- Multiplito elimitor enditive
 Exclusi patente
 Innova try it ar
 - Multiple configurations to eliminate the need for end rings
 - Exclusive design using the patented DualPac technology
 - Innovative braided packing: try it and adopt it!

Fewer Adjustments

Less Power

PACKING AND GASKETS

PUMP PACKING

1935

Food-Grade Compression Packing

Durable performance packing that is easy to install and will not score shafts.

Technical Data		
Materials	Virgin PTFE yarn, with lubricant that is food	-compliant
Applications	Pumps, valves, cookers, blenders, agitators,	mixers
Available Sizes	4,7 mm – 22,2 mm (3/16" – 7/8")	
Pressure Limit	14 bar g (200 psig) in rotating equipment 55 bar g (800 psig) in valves	Temperature Limit 230°C (450°F)
рН	0 – 14	

1730

General Service Packing

Durable performance packing that is easy to install and will not score shafts.

Technical Data			
Materials	Thermoset fibres with lubricants and blocking age	ents	
Applications	Water pumps, paper stock pumps, slurries, agitate	ors, mixers	
Available Sizes	6 mm – 25,4 mm (1/4" – 1")		
Pressure Limit	28 bar g (400 psig)	Temperature Limit	290°C (550°F)
Speed	10 m/s (2 000 fpm)	рН	1 – 13

See page 81 for available sizes.

1760

Chemical Packing

Strong and dense PTFE fibre packing for chemical applications with the heat dissipating properties of graphite.

Technical Data			
Materials	Graphite coated PTFE yarn with break-in lubrican	ts	
Applications	Black liquor pumps, chemical pumps, agitators		
Available Sizes	3,2 mm – 25,4 mm (1/8" – 1")		
Pressure Limit	17 bar g (250 psig)	Temperature Limit	260°C (500°F)
Speed	18 m/s (3 600 fpm)	рН	0 – 14

- Suitable for use in virtually all food media below 230°C
- Made with a virgin PTFE and white oil lubricant
- Independently certified EC 1935 compliant

- Easy and fast break-in
- Abrasion-resistant, while non-scoring
- Good chemical resistance
- Good temperature resistance

- Dense braid ensures excellent leakage control and prevents solid embedment
- Excellent chemical resistance
- High shaft speed

1765

White Chemical Packing

Non-staining chemical packing, ideally suited for bleach pumps and other rotary applications.

Technical Data

Materials	White expanded PTFE yarn with a special filler			
Applications	Bleach pumps, chemical	Bleach pumps, chemical pumps, agitators		
Available Sizes	6,4 mm – 25,4 mm (1/4"	– 1")		
Pressure Limit	20 bar g (300 psig)	Temperature Limit	Min -40°C – 260°C (-40°F – 500°F)	
Speed	10 m/s (2 000 fpm)	рН	0 – 14 except for Fluorine (F2), CIF3 and related compounds, and molten alkali metals	

- Non-staining
- Superior chemical resistance
- Low friction for improved speed capability
- Longer packing life

1830

Advanced Expanded Graphite PTFE Packing

Economical packing developed to meet strict specifications in pumps, agitators, mixers, and other rotating equipment.

Technical Data			
Materials	Expanded graphite PTFE filame	nts	
Applications	Wide range of applications	Pressure Limit 22	bar g (320 psig)
Available Sizes	4,8 mm – 25,4 mm (3/16" – 1")	Temperature Limit	260°C (500°F)
Speed	18 m/s (3 600 fpm)	рН	0 – 14 except for strong oxidizers in the 0 – 2 pH range

- Excellent chemical resistance
- Low friction, less heat generation and nonabrasiveness saves shafts and shaft sleeves
- Easy installation and removal
- Low leakage and long life

1400R

Carbon-Reinforced Graphite Packing

Combines the unique sealing properties of flexible graphite with the high strength of carbon fibre.

arbon fibre-reinforced flexible g	raphite packing		
rocess pumps, boiler feed pump	Process pumps, boiler feed pumps, block valves, refiners, agitators, mixers		
3,2 mm – 25,4 mm (1/8" – 1")			
	Temperature Limit	Min -40°C – 260°C (-40°F – 500°F) Max 650°C (1 200°F) steam Max 455°C (850°F) oxidizing atmosphere	
0 m/s (4 000 fpm)	рН	0 – 14 except oleum, fuming nitric acid, and aqua regia	
	2 mm – 25,4 mm (1/8" – 1") 4 bar g (200 psig) otating applications 75 bar g (4 000 psig) valves	2 mm – 25,4 mm (1/8" – 1") 4 bar g (200 psig) Temperature tating applications Limit 75 bar g (4 000 psig) valves	

- High shaft speed capability
- Passive molybdate corrosion inhibitor
- For use in valves and pumps

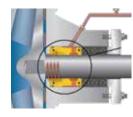
PACKING AND GASKETS

1830-SSP

Slurry Packing

Designed with a hybrid yarn, combining advanced, expanded graphite PTFE yarn with carbon yarn reinforcement.

Technical Data			
Materials	Carbon-reinforced, expanded	graphite PTFE	
Applications	Slurry pumps, mineral handli	ng slurries, tailing pum	ps
Available Sizes	9,5 mm – 25,4 mm (3/8" – 1")		
Pressure Limit	28 bar g (400 psig)	Temperature Limit	260°C (500°F)
Speed	18 m/s (3 600 fpm)	рН	0 – 14 except for strong oxidizers in the 0 – 2 pH range



- Developed to meet rigid demands of slurry sealing applications
- Excellent chemical resistance
- Low friction, less heat generation, non-abrasive, saves shafts and shaft sleeves

SuperSet™

Enhanced Packing Sets

Chesterton performance packing sets, in combination with the patented SpiralTrac[®] Environmental Controller, reduce flush water consumption and increase equipment service life.

Versions	Applications
1730 SuperSet	General service in slurries and clean fluids
1400R SuperSet	Worn equipment, high-speed and high-temperature applications
1760 SuperSet	Highly aggressive chemical environments oxidizers in the 0-2 pH range

PUMP, MIXER, AND AGITATOR PACKING

CMS 2000

Injectable Packing System

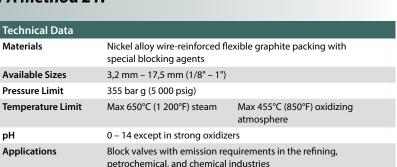
Chesterton CMS 2000 Injectable Packing System is an advanced, flushless, stuffing box leakage control sealant made of high-purity, reinforced fibre.

Technical Data	
Applications	Stock pumps, white water pumps, river water pumps, condensate pumps, water treatment pumps, and also rotating equipment applications in the food processing and handling industry
Pressure Limit	14 bar g (200 psig)
Temperature Limit	205°C (400°F)
рН	1 – 13 White not recommended for oxidizers, fluorine, chlorine trifluoride and related compounds, and molten alkali metals 0 – 14 FP

- Reduces flush water consumption
- Increases equipment MTBR
- Reduces shaft sleeve wear

- Eliminates flush and reduces leakage to insignificant levels
- Will not score shaft sleeves
- Effective with worn, fretted sleeves
- Never disassemble to repack again

PACKING AND GASKETS


EMISSIONS CONTROL

1622[™] Low E Valve Packing

Emission Control Packing for Block Valves

Chesterton 1622 Emissions Packing is designed to minimize valve emissions and exceeds current emissions requirements for the refinery, petrochemical, and chemical industries.

Guaranteed to seal less than 100 ppm for 5 years per EPA method 21.

- Extremely low emissionsFire safe
- Single spool packing
- High-pressure capability

1724 Low E Control Valve System

Emission Control Sealing System for Control Valves

Chesterton 1724 Low E is specially designed for control valves that require a minimal level of fugitive emissions. Kits can be designed to upgrade existing control valves to Low E performance. Special pre-engineering kits are designed to fit Fisher[®], Valtek[®], and Masoneilan[®] Valves.

Guaranteed to seal less than 100 ppm for 5 years per EPA method 21.

Technical Data	
Materials	Die-formed braided PTFE packing, split carbon spacer, cartridge live loading assemblies, new gland studs and nuts (for special pre-engineering kits for Fisher*, Valtek,* and Masoneilan* valves only)
Temperature Limit	205°C (400°F)
рН	0 – 14 except for molten alkali metals, elemental fluorine, and strong oxidizers
Applications	Control valves with emissions requirements in the refining, petrochemical, and chemical industry

- Reduce emissions without valve replacement
- Visual torque inspection minimizes "hot" retorques, reducing safety risks
- Easy to install

Sealing Solutions for Rotating

Whether advanced shaft sealing, gearbox protection or protective coatings, Chesterton provides the total solution for improved pump reliability.

Advanced Lubrication Technology Chesterton's QBT™ technology: extends bearing life; resists wear, load, and corrosion.

Other ARC Industrial Coatings Products

Machinable Composite Rebuild and protect worn shafts

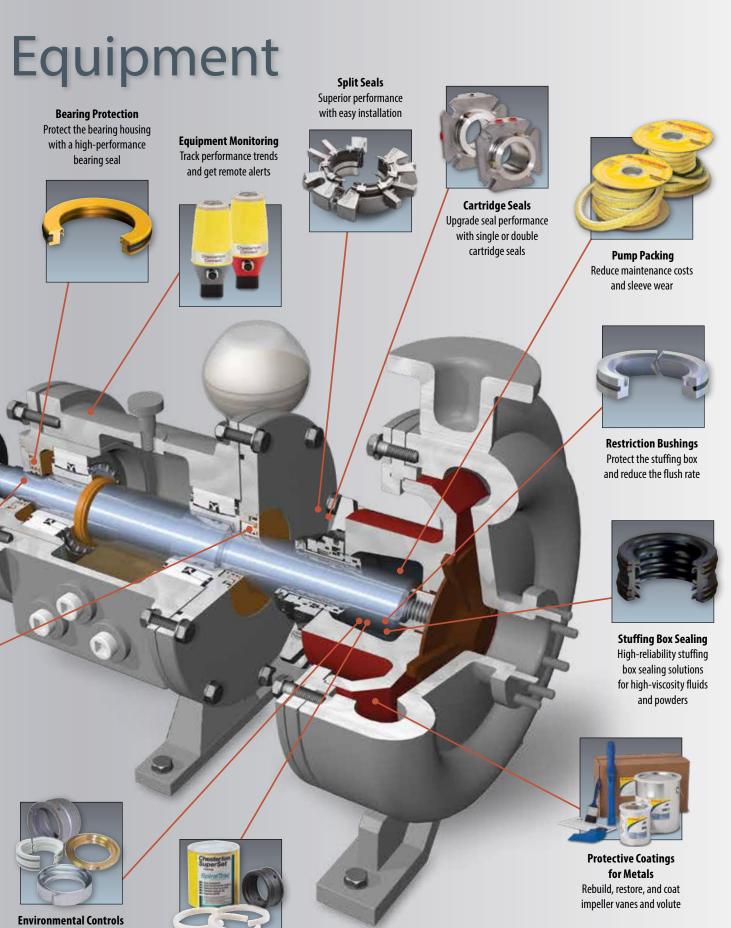
Protective Coating for Concrete & Metals Protect pump base plate, frame, and pump base

Labyrinth seal for pumps, motors, and gearboxes

Other Maintenance and Repair Products

Cold Galvanizing Compound Micronized particles of pure zinc protect against galvanic corrosion. Use on bolting, weld seams, and supports.

Anti-seize Prevent rust and seizure bolts and prevent fretting and corrosion while securing bearings.


2017 A.W. Chesterton Co

Thread Sealing High performance PTFE tapes and paste.

Gasketing Make any size gasket with Moldable Polymer Gasketing.

Eliminate abrasive particles in the stuffing box and extend seal and packing life

SuperSet™

Upgrade to the enhanced packing system to extend equipment life

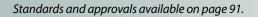
PACKING AND GASKETS

LIVE LOADING

Flanges and Heat Exchangers

Increase reliability, lower emissions, and reduce total costs by using tailored sealing solutions for critical flanges.

Technical Data	5500	5505L	5505H
Materials	Specialised stainless steel alloy	High-strength, high-temperature- resistant and corrosion-resistant stainless steel alloy	Chromium steel with oxide coating
Temperature	-200°C – 300°C (-328°F – 575°F)	-100°C – 350°C (-148°F – 662°F)	0°C – 600°C (32°F – 1100°F)
Corrosion Resistance	good	good	average
Applications	Use in combination with Chesterton Camprofile or Steel Trap™ gaskets on process flanges, heat exchangers, vessels, reactors, valve bonnets, housings, sight glasses		
Warranty	3-year warranty (see flange live loading warranty for conditions)		


Chesterton Live Loading System

Chesterton Flange Live Loading increases flange reliability by increasing the elastic energy in the flange assembly. This ensures that a pre-calculated gasket stress is maintained at all times, regardless of pressure fluctuations, gasket thickness loss, or thermal cycles. Chesterton Flange Discs are specially designed for flange applications and maintain their flexibility under extreme mechanical and thermal conditions.

- Shutdown-to-shutdown reliability
- Significantly reduces downtime on critical equipment
- Lowers emissions and meets environmental regulations
- Reduces leakage and product loss
- Reduces safety and housekeeping concerns
- Improves plant efficiency and reduces total cost

Valves

An engineered sealing system that maintains operability and improves reliability—from shutdown to shutdown in compliance with environmental regulations.

Technical Data

Materials	5300 die-formed graphite packing with style 1600 nickel alloy-reinforced braided graphite packing, carbon bushing, live loading spring sets.
Pressure Limit	317 bar g (4 600 psig)
Temperature Limit	
Maximum	2 760°C (5 000°F) in a non-oxidizing atmosphere
	430°C (800°F) in an oxidizing atmosphere
Minimum	-240°C (-400°F)
рН	0 – 14 with the exception of oleum, fuming nitric acid, aqua regia, fluorine, hydrochloric acid, and hydrofluoric acid
Applications	Block valves and air/motor-operated valves in the Power, Petrochemical, Oil Refining, Chemical, and other industries
Warranty	5-year warranty (see valve emissions warranty for conditions)

Chesterton 5300 and 1600 sealing solutions pass API 589 Fire Test

Components

Style 5150 Live Loading Sets

- Improves reliability in critical valves
- Compensates for system pressure upsets, vibrations, and thermal cycling
- Prevents leakage by gland force retention
- Extends MTBR
- Reduces maintenance costs
- Reduced stem friction ensures operability

Other Versions

Chesterton 5800 Control Valve Live

Loading Kits 5800 Graphite Wedge Packing reduces valve stem friction by 30% compared to square cross section, die-formed graphite.

PACKING AND GASKETS

VALVE PACKING

1600

Advanced Valve Stem Packing

Off-the-spool performance with emission guarantee.

Technical Data									
Materials	Nickel alloy wire-reinforced fle	Nickel alloy wire-reinforced flexible graphite packing							
Applications	Block valves, as an end ring or	n control valves, motor	-operated valves and sootblowers						
Available Sizes	3,2 mm – 25,4 mm (1/8" – 1")	3,2 mm – 25,4 mm (1/8" – 1")							
Pressure Limit	580 bar g (8 400 psig)	Temperature Limit	Max 650°C (1200°F) steam Max 455°C (850°F) oxidizing atmosphere						
рН	0 – 14 except strong oxidizers								

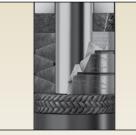
- Fire safe
- Excellent emission control
- High-pressure capability
- Guaranteed performance
- Easily cut to size on site

1724

PTFE Valve Packing

Excellent emission control and chemical resistance.

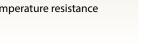
Technical Data								
Materials	PTFE yarn with protective lub	ricants						
Applications	Block valves, motor-operated	valves, control valves						
Available Sizes	3,2 mm – 25,4 mm (1/8" – 1")	3,2 mm – 25,4 mm (1/8" – 1")						
Pressure Limit	210 bar g (3 000 psig)	Temperature Limit	260°C (500°F)					
рН	0 - 14							


- Excellent chemical resistance
- Excellent emission control
- Remains flexible

5800/5800E/5800T

Graphite Wedge Packing

Patented control valve sealing solution designed to lower valve stem friction and improve sealability.


Technical Data									
Materials	Die-formed high-purity graph	Die-formed high-purity graphite							
Applications	Control valves								
Pressure Limit	210 bar g (3 000 psig) no end rings 310 bar g (4 500 psig) 1600 end ring	Temperature Limit	2 760°C (5000°F) non-oxidizing atmosphere 430°C (800°F) oxidizing atmosphere						
рН	0 – 14								

- Dramatically improves valve stem response
- Low emissions guarantee
- Excellent chemical and temperature resistance

Standards and approvals available on page 91.

(CHESTERTON.

SEMI METAL GASKETS

Camprofile

High Performance, Semimetallic Gasketing

Highly reliable flange gasket with excellent emission control.

Technical Data							
Materials	Stainless steel carrier with (more materials available)	Stainless steel carrier with a graphite or PTFE sealing element (more materials available)					
Applications Pipe flanges, heat exchangers, vessels, reactors, valve bonnets, housings							
Pressure Limit	400 bar g (5 800 psig)	Temperature Limit	graphite sealing layer 550°C (1 020°F) inert media -200°C – 900°C Max (-328°F – 1 650°F) PTFE sealing layer 300°C (572°F)				
nH	0 – 14						

- Certified low emission performance
- High reliability
- DIN and ANSI standard gaskets
- Custom shapes available, including heat exchanger gaskets

SHEET GASKETS

Duragraf F

Expanded Graphite Sheet

An easy-to-use, economical, general service graphite sheet with a flat, stainless steel insert.

Technical Data							
Materials	Flexible graphite with a 50 µr	Flexible graphite with a 50 μ m 316SS stainless steel flat insert					
Applications	Pipe flanges, vessels, reactors	, valve bonnets, housings					
Available Thicknesses	1 mm, 1,5 mm, 2 mm, 3 mm	1 mm, 1,5 mm, 2 mm, 3 mm					
Sheet Size	1 000 mm x 1 000 mm (39" x	39")					
Pressure Limit	100 bar g (1 450 psig)	Temperature Limit 500°C (932°F)					

Duragraf T

Expanded Graphite Sheet

Flexible graphite sheet with a 100 μ m 316SS stainless steel insert.

Technical Data								
Materials	Flexible graphite with a 50 µ	Flexible graphite with a 50 μm 316SS stainless steel flat insert						
Applications	Pipe flanges, vessels, reacto	rs, valve bonnets, housin	gs					
Available Thicknesses	1 mm, 1,5 mm, 2 mm, 3 mm	1 mm, 1,5 mm, 2 mm, 3 mm						
Sheet Size	1 500 mm x 1 500 mm (59" >	< 59")						
Pressure Limit	120 bar g (1 740 psig)	Temperature Limit	500°C (932°F)					

- Easy to cut by hand
- Excellent performance in steam and aggressive media
- Available as a pre-cut gasket in standard and custom sizes

- Available in nuclear grade
- Mechanically bonding assures purity
- Available as a pre-cut gasket in standard and custom sizes

459

Graphite Sheet with Nickel Reinforcement

Technical Data	
Materials	Flexible graphite with a 0,026 mm nickel flat insert
Applications	Pipe flanges, vessels, reactors, valve bonnets, housings
Available Thicknesses	1 mm, 1,6 mm (1/16"), 2 mm, 3,2 mm (1/8")
Sheet Size	1 000 x 1 000 mm (39" x 39")
Pressure Limit	140 bar (2 000 psi)
Temperature Limit	870°C (1 600°F) non-oxidizing, 454°C (850°F) oxidizing, minimal -200°C

- Easy to cut manually
- Excellent pressure capability
- High-temperature capability
- High chemical resistance

455EU

General Service Gasket Sheet

Multi-purpose gasket with excellent performance in low pressure steam and light chemicals.

Technical Data		
Materials	Aramid fibres, special fillers, and an NBI	R binder
Applications	Liquids and gaseous media, drinking w in industry	ater applications, general applications
Available Thicknesses	0,5 mm, 1 mm, 1,5 mm, 2 mm, 3 mm	
Sheet Size	1 500 mm x 1 500 mm (59" x 59")	
Pressure Limit	85 bar g (1 230 psig)	Temperature Limit 250°C (482°F)

- Economical gasket for general process applications
- Works in steam and light chemical applications
- Available as a pre-cut gasket in standard and custom sizes

553

Environmental Gasket

Specifically designed to keep the environment free from hazardous substances by combining an ecological composition with excellent sealing properties.

Technical Data		
Materials	Aramid fibres, special fillers, and an N	BR binder
Applications	Oils, gases, chemicals, refrigerants, ste	eam, water in all industries
Available Thicknesses	0,5 mm, 1 mm, 1,5 mm, 2 mm, 3 mm	
Sheet Size	1 500 mm x 1 500 mm (59" x 59")	
Pressure Limit	120 bar g (1 740 psig))	Temperature Limit 450°C (842°F)

BS 7531 Grade X

- Works in steam, chemicals, and a variety of hydrocarbons
- Excellent general service refinery gasket
- High-temperature and high-pressure capability

ECS-T

PTFE Sheet Gasket

Filled PTFE sheet with excellent mechanical properties and outstanding chemical resistance.

Technical Data		
Materials	PTFE with fillers	
Applications	High-pressure and temperature se plants in strong acids	ervices, especially in chemical and hydrocarbon
Available Thicknesses	1 mm, 1,5 mm, 2 mm, 3 mm	
Sheet Size	1 500 mm x 1 500 mm (59" x 59") 1 200 mm x 1 200 mm (47" x 47")	except 1 mm thickness
Pressure Limit	83 bar g (1 200 psig)	Temperature Limit 260°C (500°F)

Standards and approvals available on page 91.

Ancillary Products

Bolted flange connections rely on accurate tensioning to assure leak tightness. Accurate tensioning is impossible on unlubricated bolts. Chesterton anti-seize products provide a consistent coefficient of friction between the bolt and nut threads therefore assuring no leakage and low fugitive emissions.

785(E) and 785 FG High-performance, extreme-pressure, anti-seize compound. Go to page 64.

185 Form-in-place spooled joint sealant. 100% virgin PTFE. Go to chesterton.com

783(E) ACR Anti-seize with excellent corrosion protection for nuts and bolts and mechanical assemblies. Go to page 64.

800 GoldEnd® Tape Heavy-duty, high-density PTFE sealing tape. Go to page 67.

615 HTG High performance grease for severe operating conditions. Go to page 62.

860 MPG

Two-part, extrudable gasketing material allows for the creation of ultrathin gaskets. Go to page 67.

- High chemical resistance
- Excellent in strong acids
- Available as a pre-cut gasket in standard and custom sizes

POLYMER SEALS

DEDICATED TO **INNOVATION** AND RELIABILITY

Engineered Polymer Solutions

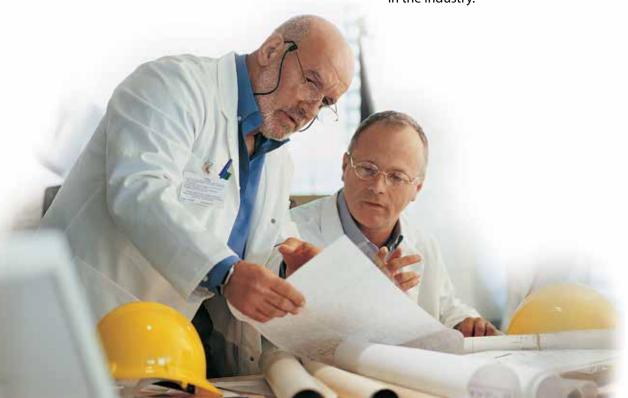
Chesterton's Polymer Seals group is a worldwide manufacturer and distributor of the highest performing polymer seals. We combine our technical expertise with state-of-the-art material technologies to provide industry-leading solutions.

- Hydraulic and pneumatic seals
- Custom seals
- Rotary seals

- Spring-energized seals
- Service programs
- Materials and Innovation

We utilize the full range of state-of-the-art polymer technologies to support a wide range of industrial applications.

Designs and Expertise


Our engineers draw on years of experience to design value-added products with a focus on continuously improving equipment performance.

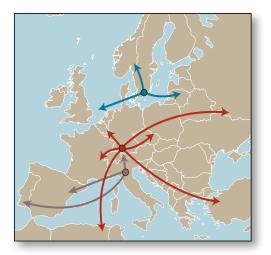
SpeedSeal[®]

Chesterton offers regional service with fully integrated facilities that rely on advanced equipment, flexible tooling, and semi-finished materials. This allows us to provide you with a broad selection of product offerings-with same-day delivery.

Solutions and Service

Our distributors and specialists work closely with customers to provide the best service in the industry.

SpeedSeal[®] Service Centres


Fast and Flexible

Chesterton SpeedSeal offers same-day delivery from its Service Centre network for Europe and the Middle East.

Our fully-integrated facility utilises advanced equipment and a wide range of materials and designs to provide you with a broad selection of product offerings.

- Same-day delivery*
- Sizes available up to 1400 mm*
- Engineered solutions
- CAD hydraulic engineering
- Prototypes available
- Cylinder and equipment upgrade and repair

SpeedSeal Service Centres

- SpeedSeal Germany
 Ismaning
- SpeedSeal Sweden– Karlshamn
- SpeedSeal Italy
 Gallarate

*Conditions apply. Contact SpeedSeal for available service options.

POLYMER SEALS – Product Selection Guide

				Profile			At	tribute	5			Frictior		Wea	Wear Resistance		
	Types	Speed	Product	Series	Description	Mould	*Mach.	Hyd.	Pne.	Split	Low	Mid	High	Low	Mid	High	
	Cap Seals	to 15 m/s	RCCS		Double acting, dual component seal		•	•	•		•				•		
	(Rod and Piston)	(3000 ft/min)	PCCS		Double acting, dual component seal		•	•	•		•				•		
	Wipers		WCCS		Cap seal wiper profile		•	•	•		•				•		
	wipers		W21K		Positive angled profile with flange		•	•	•	•	•					•	
			R22KN	Ľ	Single acting, positive angled profile		•	•	•	•	•					•	
	Rod Seals, U-Cups		R22K	K	Single acting, radiused sealing surface for hydraulic applications		•	•				•			•		
			R23K	K	Single acting, radiused sealing surface for pneumatic applications		•		•		•				•		
			R8K		Single acting, positive angled profile, multiple stacked set	•		•		•		•			•		
			R27K		Single acting, positive angled profile, multiple stacked set		•	•		•		•			•		
	Rod Seals, Stacked Sets		R11K		Single acting, negative angled profile, dual stacked set	•	•	•		•		•			•		
lotion			R28K		Single acting, positive angled profile, multiple stacked set		•	•		•		•			•		
Reciprocating Motion		to 1 m/s	R28K1	///	Single acting, positive angled profile, multiple stacked set		•	•				•			•		
ciproc		(200 ft/min)	P22KN		Single acting, positive angled profile		•	•	•		•					•	
Re	Piston Seals, U-Cups		P22K	ľ	Single acting, radiused sealing surface for hydraulic applications		•	•				•				•	
			P23K	K	Single acting, radiused sealing surface for pnuematic applications		•		•		•					•	
			P8K		Single acting, positive angled profile, multiple stacked set	•		•		•		•			•		
	Piston Seals,		Р27К		Single acting, positive angled profile, multiple stacked set		•	•		•		•			•		
	Stacked Sets		P28K		Single acting, positive angled profile, multiple stacked set		•	•		•		•			•		
			P28K1		Single acting, positive angled profile, multiple stacked set		•	•				•			•		
	Replaceable		16K, 17K, 18K, 19K		Metric and imperial English size bearing band and strips	•		•	•	•	•					•	
	Bearings		WR	-	Machined to size bearing bands		•	•	•	•	•				•		
	Anti-Extrusion Rings		9K		Backup rings or anti-extrusion rings		•	•	•	•	•				•		
	Compression Seals	to 0.75 m/s	R20K		Double acting, negative angled profile, low speed hydraulic applications		•	•					•			•	
	(Rod and Piston)	(150 ft/min)	P20K		Double acting, negative angled profile, low speed hydraulic applications		•	•					•			•	
Static	Valve Seals		M20K-OR		Static seal for O-Ring upgrades in hydraulic valves		•	•			•			•			

Ratings on this chart are for reference only. Values may be higher or lower depending upon the application details such as surface finish, hardness, lubrication, and concentricity. Jacket/Spring combinations will also affect these values. *Machined product does not require tooling.

	_		_	Profile Attributes		Attributes		Friction		ı	Wear Resistance					
	Types Speed	Speed	Product	Series	Description	Mould	*Mach.	Bearing Protect.	Stuffing Box	Split	Low	Mid	High	Low	Mid	High
	Continuous Rotary Lip Seals	to 20 m/s (4000 ft/min)	30K	5	Single acting, low pressure seal for bearing & gearbox protection		•	•	•		•					•
	Split Rotary Lip Seals	to 12.5 m/s (2500 ft/min)	33K	Ē	Single acting, non-pressure split seal for bearing & gearbox protection		•	•		•	•					•
	Wipers	to 0.5 m/s	W21K		Positive angled profile with flange, slow rotary		•	•	•	•		•			•	
lotion	Rod & Piston Seals	(100 ft/min)	R22KN, P22KN	K	Single acting, positive angled profile, slow rotary		•	•	•	•		•			•	
Rotary Motion	Rotary Face Seal	20 m/s (3937 ft/min)	50K		Face seal for dynamic rotary applications	•		•			•				•	
Ro	Rotary Lip Seals	25 m/s 51K	V	Single acting with helical garter spring, fabric reinforced back	•		•		•		•			•		
	Rotary Lip Seals	(4921 ft/min)	52K		Single acting with helical garter spring, metallic stiffener ring	•		•				•			•	
	Rotary Lip Seals	35 m/s (6889 ft/min)	53K		Single acting with garter/finger spring, metallic outer case	•		•			•				•	
	Cartridge Seals	5 m/s (984 ft/min)	30KC	 -	Polymer cartridge with inboard, outboard sealing elements and built-in flushing port		•		•		•					•
	Restriction Bushings	-	14K		Split, single acting with tapered lip		•		•	•	•					•
	Rotary Shaft Seal	15 m/s 3000 ft/min	Matrix Seal		Non-pressure split seal for bearing and gearbox protection, for worn shafts and runout conditions		•	•		•	•				•	

Ratings on this chart are for reference only. Values may be higher or lower depending upon the application details such as surface finish, hardness, lubrication, and concentricity. Jacket/Spring combinations will also affect these values. *Machined product does not require tooling.

 \ast Please contact your Chesterton representative for larger sizes

POLYMER SEALS

Sealing Technology

End Cap Head

Fluid Power Sealing Technology

Cylinder Upgrade—Solutions Approach

The Chesterton cylinder upgrade program applies a systematic solutions approach for improving seal performance during the repair and overhaul of equipment. Working in partnership with you, we offer a unique approach to total cylinder refitting that saves money and delivers a better, more reliable cylinder back to your plant.

- Minimize downtime and maintenance costs
- Improve equipment reliability
- Extend leak-free service life
- Reduce hydraulic fluid consumption and support fluid management efforts

1
4

Wiper

The function of a wiper is to effectively clean and to dislodge foreign matter from a reciprocating rod/ram to prevent contaminants from entering the system.

Rod Seal

The function of a rod seal is to act as a pressure barrier and prevent fluid bypass along the dynamic (rod/ram) surface and the static (stuffing box bore) surface under various operating conditions. It regulates the fluid film during extension of the cylinder rod.

Static Seal

These seals are continuous compression seals designed for use in static applications and are often applied as an upgrade from conventional face seals or O-Ring designs.

Bearing Band

These split, replaceable bearings prevent metal-to-metal contact of moving parts and help prolong equipment and seal life. These bearings reduce radial movement, therefore extending seal life and reducing the risk of reoccurring damage.

Piston Seal

The function of a piston seal is to prevent fluid bypass between the piston head and the cylinder bore under various operating conditions and to act as a pressure barrier. It helps to maintain system efficiency and plays an important role in controlling the cylinder motion and maintaining position.

POLYMER SEALS

POLYMER MATERIALS

Chesterton's exclusive thermoset polyurethanes (EU) are the most advanced seal materials that provide superior performance in hydraulic, pneumatic, and rotary equipment. This state-of-the-art polymer technology has been field-tested and proven in the most demanding applications around the world.

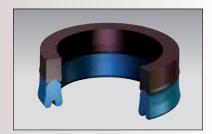
AWC800

Red Polymer

AWC800, the base of Chesterton's polymer seal program, is available in the majority of profiles.

Operating Conditions	
Temperature	50°C – 85°C (-60°F – 185°F)
Pressure	Maximum 103,5 MPa (15 000 psig)
Fluid Compatibility	Mineral oil-based fluids, HFA-E, HFB (ISO 6743-4)
Surface Speed (continuous)	Reciprocating 1,0 m/s (200 ft/min), rotating 0,5 m/s (100 ft/min)
Coefficient of Friction	Dry running 0,18 – 0,22
Shelf Life	>25 years

AWC800 is an EU polyether PU class material


- High sealing performance and leak-free operation
- Excellent wear- and abrasion-resistance for hostile environments
- Long elastic memory enables a longer service life
- Plant-wide usage

AWC800 is available for moulded seals

AWC800 semi-finished tubes are in stock at all Chesterton SpeedSeal centres for rapid delivery of machined seals.

AWC800 and AWC805 Fusion Program for flexible and fast delivery of extra large sized seals.

AWC808

Standard Polymer Material

Chesterton's AWC808 is a thermoplastic polyester polyurethane (AU) material designed to provide optimum sealing durability for light- and medium-duty fluid power equipment and industry-standard hydraulic pneumatic cylinders.

nei

0,18 - 0,22 dry running

540%

AWC825

Low Durometer Machinable Seal Material

Not available

350%

AWC825 is a differentiated, machinable thermoset material specifically designed to improve seal performance associated with worn, scored, aged, or pitted heavy-duty industrial cylinders and presses.

AWC860

Cherry Polymer

Typical use

Temperature

compatibility

Coefficient of friction

Elongation at break

Pressure

Fluid

Thanks to its mechanical properties, the AWC860 is best suited for highly demanding, heavy-duty applications where it helps extend equipment's mean time between repairs (MTBR).

Operating Co	onditions		
	AWC808 Standard Polymer Material	AWC825 Dark Blue Polymer	AWC860 Cherry Polyn
Description and benefits	 Excellent chemical compatibility Hydrolysis resistance Cost-effective solution for light- and medium-duty applications 	 Highly elastic Extends efficient operation in slightly worn equipment Superior wear, tear, and abrasion resistance 	 Suitable for h Robust polym Longer servic excellent abra

Not available

230%

 Excellent chemical compatibility Hydrolysis resistance Cost-effective solution for light- and medium-duty applications 	 Extends efficient operation in slightly worn equipment Superior wear, tear, and abrasion resistance Long-term elastic memory 	 Suitable for higher temperatures Robust polymer structure Longer service life due to excellent abrasion resistance Very low friction
 Industry standard fluid power equipment Light and medium-duty hydraulic and pneumatic cylinders Hydraulic and mechanical presses 	 Mining equipment Dusty environments Steel Industry Hydraulic and mechanical presses 	 Mining equipment Forging machines Steel industry Heavy-duty applications
-20°C – 85°C (-4 °F – 185°F)	-40°C – 85°C (-40°F – 185°F)	-50°C – 120°C (-60°F – 250°F)
Max 40 MPa (5 800 psi)	Max 52 MPa (7 200 psi)	Max 103,5 MPa (15 000 psi)
Mineral oil-based fluids, HF, HFL, HFA, HFB, HFD-U, HTEG, HEES, hydraulic fluids (ISO 6743-4)	HF, HFL, HFA, HFB	Mineral oil-based fluids, HF, HFL, HFA, HFB (ISO 6743-4)

For additional information about product compatibility please visit chestertonfluidpower.com.

POLYMER SEALS – HYDRAULIC AND PNEUMATIC SEALS

WIPER SEALS

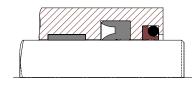
W21K / CW21K

Wipers for Hydraulic and Pneumatic Applications

High performance protection of hydraulic and pneumatic actuators/systems.

and priedmatic actu	alors/systems.	۷	·
SPECIFICATIONS			
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Speed m/s (ft/min)
AWC704 (FKM)	6 – 305 (1/4 – 12)	-30 – 200 (-20 – 400)	1,5 (300)
AWC800 (EU)	6 – 1 400 (1/4 – 55)	-50 – 85 (-60 – 185)	1 (200)
AWC808 (AU)	6 – 400 (1/4 – 15,75)	-20 - 85 (-4 - 185)	0,5 (100)
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-35 – 75 (-30 – 165)	0,5 (100)
AWC830 (EU)	6 – 254 (1/4 – 10)	-50 – 120 (-60 – 250)	0,9 (185)
AWC860 (EU)	6 - 508 (1/4 - 20)	-50 – 120 (-60 – 250)	1,25 (250)

PRODUCT PROFILES:



- Positive rake lip design effectively wipes contaminants away from surface
- Prevents scoring and system contamination
- Abrasion-resistant design withstands demanding environments
- Prolongs lifetime of equipment and components

WCCS

Double Acting Wiper Seals

High performance, dual component system for bidirectional sealing in hydraulic and pneumatic applications.

(

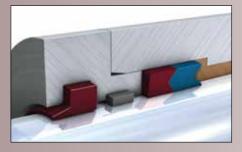
SPECIFICATIONS

Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Speed m/s (ft/min)
**AWC800 (EU)	6 – 1320 (1/4 – 52)	-50 – 85 (-60 – 185)	1 (200)
**AWC808 (AU)	6 – 400 (1/4 – 15.75)	-20 – 85 (-4 – 185)	0.5 (100)
**AWC860 (EU)	6 – 508.0 (1/4 – 20)	-50 – 120 (-60 – 250)	1.25 (250)
***AWC300 (Glass-Filled PTFE)	up to 600 (24)	-35 – 120 (-30 – 250)	15 (3000)
***AWC400 (Carbon-Filled PTFE)	up to 600 (24)	-35 – 120 (-30 – 250)	15 (3000)
***AWC500 (Bronze-Filled PTFE)	up to 600 (24)	-35 – 120 (-30 – 250)	15 (3000)

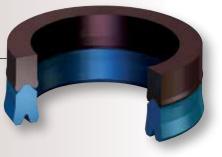
PRODUCT PROFILES:

 * Please contact your Chesterton representative for larger sizes.
 **Buna energizer
 ***FKM energizer

- Second generation PTFE and high performance polymers offer improved operation
- Compression seal design increases sealing force with system pressure
- Dramatically reduces friction and eliminates "Stick-Slip" effect
- Excellent chemical- and heat-resistant characteristics



ROD SEALS


R11K

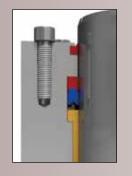
Split, Dual Component Hydraulic Rod Seal

Adaptive solution for heavy-duty hydraulic cylinders. Eliminates the equipment disassembly during seal installation, wand provides sealing on worn, scored surfaces.

- Replaces the stacked set assembly
- Split design eliminates the need to disassemble equipment
- One optimized seal concept for different press applications

- Dual material combination works in both new and worn equipment
- Design eliminates shimming and future adjustments
- Fusion Program

SPECIFICATIONS Speed m/s (ft/min) Material Size Range³ Temperature °C (°F) Pressure MPa (psi) (designation) mm (inch) **PRODUCT PROFILES:** AWC704 (FKM) 6 - 152 (1/4 - 12) -30 - 200 (-20 - 400) 34,5 (5 000) 1,5 (300) AWC800 (EU) 6 – 1 320 (1/4 – 52) -50 – 85 (-60 – 185) 103,5 (15 000) 1 (200) AWC805 (EU) 6 - 1 320 (1/4 - 52) -50 - 85 (-60 - 185) 103,5 (15 000) 0,5 (100) AWC808 (AU) 6 - 400 (1/4 - 15,75) -20 - 85 (-4 - 185) 40 (5 800) 0,5 (100) 0,5 (100) AWC825 (EU) 6 - 1 400 (1/4 - 55) -40 - 85 (-40 - 185) 51,7 (7 500) AWC830 (EU) 6 - 254 (1/4 - 10) -35 – 75 (-30 – 165) 52,0 (7 500) 0,9 (185) AWC860 (EU) 6 - 508 (1/4 - 20) -50 - 120 (-60 - 250) 103,5 (15 000) 1,25 (250)



APPLICATIONS

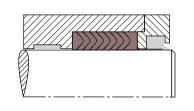
Tailored seal systems can be built on the base of the 11K in combination with Chesterton 9K anti-extrusion rings and spacers/stand-off rings up. This module system allows for creating the most suitable seal kit for all kinds of heavy-duty and demanding hydraulic cylinder applications and operating conditions. Flexible, modular and custom tailored, seal systems give an optimum solution for replacement of conventional stacked sets.


Large stuffing box depth. Backup ring (9K) protects seal (11K) against extrusion while spacer fills up the axial space in front of the seal set.

Multi-component system design for short stuffing boxes where integrated backup ring is against extrusion. Stand-off ring supports the seal and keeps it in position (in case of floating bushing, or in vacuum).

Large stuffing box depth. Customized Self-aligning gland ring provides superior resistance against extrusion in case of large extrusion gap (worn bushings, worn rams).

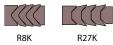
Multi-component system for replacement of traditional packing set with extra large stuffing box depth. Spacer is in combination with stand-off ring, keeping the seal in position, while self-aligning gland ring protects seal against extrusion in case of large extrusion gap. (Typical applications are worn horizontal press cylinders).



POLYMER SEALS – HYDRAULIC AND PNEUMATIC SEALS

R8K[™]/ R27K / R28K

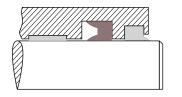
Split, Stacked Set for Hydraulic Rod Applications


Advanced stacked set technology for high-speed hydraulic applications and for scored, mechanically damaged rod and ram surfaces.

SPECIFICATIONS							
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min)			
AWC704 (FKM)	6 – 305 (1/4 – 12)	-30 - 200 (-20 - 400)	16 (2 320)	1,5 (300)			
AWC800 (EU)	6 – 1 400 (1/4 – 55)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)			
AWC808 (AU)	6 – 400 (1/4 – 15,75)	-20 - 85 (-4 - 185)	40 (5 800)	0,5 (100)			
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-35 – 75 (-30 – 165)	52 (7 500)	0,5 (100)			
AWC830 (EU)	6 – 254 (1/4 – 10)	-50 – 120 (-60 – 250)	52 (7 500)	0,9 (185)			
AWC860 (EU)	6 - 508 (1/4 - 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)			

R8K molded not available in AWC808 and AWC825 materials.u

PRODUCT PROFILES:



- Split components for ease of installation
- Light gland offers greater speed capability than conventional sets
- Pressure-sensitive lip design minimizes friction and extends service life
- Material combinations designed for use in both new and worn equipment

R22KN

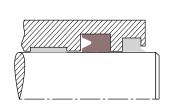
Single Acting U-Cup Design for Rod and Piston Applications

High performance U-Cup design for hydraulic and pneumatic applications. The 22KN design is manufactured using a machining process which allows for the flexibility to create any size based on equipment dimensions.

1	SPECIFICATIONS O							
	Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min)			
	AWC704 (FKM)	6 – 305 (1/4 – 12)	-30 – 200 (-20 – 400)	16 (2 320)	1,5 (300)			
	AWC800 (EU)	6 – 1 400 (1/4 – 55)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)			
	AWC808 (AU)	6 – 400 (1/4 – 15,75)	-20 - 85 (-4 - 185)	40 (5 800)	0,5 (100)			
	AWC825 (EU)	6 – 1 400 (1/4 – 55)	-35 – 75 (-30 – 165)	52 (7 500)	0,5 (100)			
	AWC830 (EU)	6 – 254 (1/4 – 10)	-50 – 120 (-60 – 250)	52 (7 500)	0,9 (185)			
	AWC860 (EU)	6 - 508 (1/4 - 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)			

PRODUCT PROFILES:

*Please contact your Chesterton representative for larger sizes. Standards and approvals available on page 92.


- Automatic sealing for optimal sealing force with minimal frictional resistance
- Flexible lip design compensates for excessive radial space in worn equipment
- Advanced material technology withstands scored, damaged surfaces
- Positive rake lip profile wipes away contamination from mating surfaces
- Fusion Program

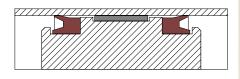
Single Acting U-Cup for Rod Applications in Hydraulics

Flexible family of high performance hydraulic seals for standard and high-pressure applications.

SPECIFICATIONS

SPECIFICATIONS								
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min)				
AWC704 (FKM)	6 – 305 (1/4 – 12)	-30 – 200 (-20 – 400)	16 (2 320)	1,5 (300)				
AWC800 (EU)	6 – 1 320 (1/4 – 52)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)				
AWC808 (AU)	6 – 400 (1/4 to 15,75)	-20 – 85 (-4 – 185)	40 (5 800)	0,5 (100)				
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-40 – 85 (-40 – 185)	51,7 (7 500)	0,5 (100)				
AWC830 (EU)	6 – 254 (1/4 – 10)	-35 – 75 (-30 – 165)	52,0 (7 500)	0,9 (185)				
AWC860 (EU)	6 – 508 (1/4 – 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)				

Applicable standards: DIN/ISO 5597, DIN/ISO 5597-1, DIN/ISO 7425-2


PRODUCT PROFILES:

R23K / P23K

Pneumatic Seals for Rod and Piston Applications

Unique seal design incorporated with high performance polymer technology for low friction sealing in pneumatic applications.

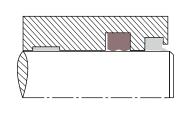
SPECIFICATIONS								
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min)				
AWC704 (FKM)	6 – 305 (1/4 – 12)	-30 - 200 (-20 - 400)	16 (2 320)	1,5 (300)				
AWC800 (EU)	6 – 1 320 (1/4 – 52)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)				
AWC808 (AU)	6 - 400 (1/4 - 15,75)	-20 - 85 (-4 - 185)	40 (5 800)	0,5 (100)				
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-40 - 85 (-40 - 185)	51,7 (7 500)	0,5 (100)				
AWC830 (EU)	6 – 254 (1/4 – 10)	-35 – 75 (-30 – 165)	52,0 (7 500)	0,9 (185)				
AWC860 (EU)	6 – 508 (1/4 – 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)				

PRODUCT PROFILES:

*Please contact your Chesterton representative for larger sizes. Standards and approvals available on page 92.

- Single acting, U-Cup design, zero leakage throughout the entire operating range
- Abrasion-resistant design, excellent performance in hydraulic applications
- Lip geometry stabilizes seal to prevent twisting and to ease installation
- Application-specific solutions, including anti-extrusion ring, energizer, and dynamic/static lip designs

- Unique lip geometry provides optimal sealing force for pneumatic applications
- Radiused lip design ensures a continuous lubricating film, minimizing wear
- Unique design minimizes frictional heat and energy consumption
- Eliminates "Stick-Slip" effect



POLYMER SEALS – HYDRAULIC AND PNEUMATIC SEALS

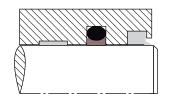
R20KTM

Heavy-Duty, Bidirectional **Hydraulic Seal**

Robust seal design combined with *high performance polymer technology* for most demanding heavy-duty, high-pressure applications.

SPECIFICATIONS	SPECIFICATIONS								
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min)					
AWC704 (FKM)	6 – 305 (1/4 – 12)	-30 - 200 (-20 - 400)	16 (2 320)	1,5 (300)					
AWC800 (EU)	6 – 1 400 (1/4 – 55)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)					
AWC808 (AU)	6 - 400 (1/4 - 15,75)	-20 - 85 (-4 - 185)	40 (5 800)	0,5 (100)					
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-35 – 75 (-30 – 165)	52 (7 500)	0,5 (100)					
AWC830 (EU)	6 – 254 (1/4 – 10)	-50 – 120 (-60 – 250)	52 (7 500)	0,9 (185)					
AWC860 (EU)	6 - 508 (1/4 - 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)					

PRODUCT PROFILES:



- Ideal replacement for 2-, 3-, or 4-piece cap seal assemblies
- Excellent extrusion resistance
- Abrasion-resistant design withstands demanding environments
- Outstanding resistance to shock loading and pressure spikes

RCCS

Cap Seals

High performance, dual component system for bidirectional sealing in hydraulic and pneumatic applications.

SPECIFICATIONS				Ú Ú
Cap Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min) Reciprocating/ <i>Rotary</i>
**AWC800 (EU)	up to 1 400 (55)	-35 – 85 (-30 – 185)	34,5 (5 000)	0,85 (185)/0,5 (100)
**AWC808 (AU)	6 – 400 (1/4 – 15,75)	-20 - 85 (-4 - 185)	40 (5 800)	0,5 (100)/ <i>0,25 (50)</i>
**AWC860 (EU)	up to 508 (20)	-35 – 120 (-30 – 250)	34,5 (5 000)	1,25 (250)/0,75 (150)
***AWC300 (glass filled PTFE)	up to 600 (24)	-35 – 120 (-30 – 250)	34,5 (5 000)	15 (3 000)/ <i>5,0 (960)</i>
***AWC400 (carbon filled PTFE)	up to 600 (24)	-35 – 120 (-30 – 250)	34,5 (5 000)	15 (3 000)/ <i>5,0 (960)</i>
**AWC500 (bronze filled PTFE)	up to 600 (24)	-35 – 120 (-30 – 250)	34,5 (5 000)	15 (3 000)/ <i>5,0 (960)</i>

PRODUCT PROFILES:

*Please contact your Chesterton representative for larger sizes. Standards and approvals available on page 92.

NBR energizer *FKM energizer

- Second-generation PTFE and high performance polymers offer improved operation
- Compression seal design increases sealing force with system pressure
- Dramatically reduces friction and eliminates "Stick-Slip" effect
- Excellent chemical- and heat-resistant characteristics

PISTON SEALS

P8K[™]/ P27K / P28K

Split, Stacked Set for Hydraulic **Piston Applications**

Advanced stacked set technology for high-speed hydraulic applications and for scored, mechanically damaged rod and ram surfaces.

SPECIFICATIONS

				-+
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min)
AWC704 (FKM)	6 - 305 (1/4 - 12)	-30 - 200 (-20 - 400)	16 (2 320)	1,5 (300)
AWC800 (EU)	6 – 1 400 (1/4 – 55)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)
AWC808 (AU)	6 - 400 (1/4 - 15,75)	-20 - 85 (-4 - 185)	40 (5 800)	0,5 (100)
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-35 – 75 (-30 – 165)	52 (7 500)	0,5 (100)
AWC830 (EU)	6 – 254 (1/4 – 10)	-50 – 120 (-60 – 250)	52 (7 500)	0,9 (185)
AWC860 (EU)	6 - 508 (1/4 - 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)

P8K moulded not available in AWC808 and AWC825 materials.

PRODUCT PROFILES:

P11K

Split, Dual Component **Hydraulic Piston Seal**

Adaptive solution for heavy-duty hydraulic cylinders. Eliminates the equipment disassembly during seal installation, wand provides sealing on worn, scored surfaces.

SPECIFICATIONS

Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min)
AWC704 (FKM)	6 - 305 (1/4 - 12)	-30 - 200 (-20 - 400)	16 (2 320)	1,5 (300)
AWC800 (EU)	6 – 1 320 (1/4 – 52)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)
AWC805 (EU)	6 – 1 320 (1/4 – 52)	-50 – 85 (-60 – 185)	103,5 (15 000)	0,5 (100)
AWC808 (AU)	6 - 400 (1/4 - 15,75)	-20 – 85 (-4 – 185)	40 (5 800)	0,5 (100)
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-40 – 85 (-40 – 185)	51,7 (7 500)	0,5 (100)
AWC830 (EU)	6 – 254 (1/4 – 10)	-35 – 75 (-30 – 165)	52,0 (7 500)	0,9 (185)
AWC860 (EU)	6 - 508 (1/4 - 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)

PRODUCT PROFILES:

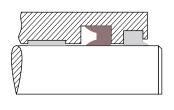
*Please contact your Chesterton representative for larger sizes. Standards and approvals available on page 92.

 Split components for ease of installation

 \bigcirc

- Light gland offers greater speed capability than conventional sets
- Pressure-sensitive lip design minimizes friction and extends service life
- Material combinations designed for use in both new and worn equipment

- Replaces the stacked set assembly
- Split design eliminates the need to disassemble equipment
- One optimized seal н. concept for different press applications
- Dual material combination works in both new and worn equipment
- Design eliminates shimming and future adjustments
- **Fusion Program**



POLYMER SEALS – HYDRAULIC AND PNEUMATIC SEALS

P22KN

Single Acting U-Cup Design for Piston Applications

High performance U-cup design for hydraulic and pneumatic applications. The 22KN design is manufactured using a machining process which allows for the flexibility to create any size based on equipment dimensions.

SPECIFICATIONS	5			Ţ
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPA (psi)	Speed m/s (ft/min)
AWC704 (FKM)	6 – 305 (1/4 – 12)	-30 - 200 (-20 - 400)	16 (2 320)	1,5 (300)
AWC800 (EU)	6 – 1 400 (1/4 – 55)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)
AWC808 (AU)	6 – 400 (1/4 – 15,75)	-20 - 85 (-4 - 185)	40 (5 800)	0,5 (100)
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-35 – 75 (-30 – 165)	52 (7 500)	0,5 (100)
AWC830 (EU)	6 – 254 (1/4 – 10)	-50 – 120 (-60 – 250)	52 (7 500)	0,9 (185)
AWC860 (EU)	6 - 508 (1/4 - 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)

PRODUCT PROFILES:

P22K

Single Acting U-Cup for Piston Applications in Hydraulics

Flexible family of high performance hydraulic seals for standard and high-pressure applications.

SPECIFICATIONS				Ţ
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min)
AWC700 (FKM)	6 – 152 (1/4 – 6)	-30 - 200 (-20 - 400)	34,5 (5 000)	1,5 (300)
AWC800 (EU)	6 – 1 320 (1/4 – 52)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)
AWC808 (AU)	6 - 400 (1/4 - 15,75)	-20 – 85 (-4 – 185)	40 (5 800)	0,5 (100)
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-40 - 85 (-40 - 185)	51,7 (7 500)	0,5 (100)
AWC830 (EU)	6 – 254 (1/4 – 10)	-35 – 75 (-30 – 165)	52,0 (7 500)	0,9 (185)
AWC860 (EU)	6 - 508 (1/4 - 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)

PRODUCT PROFILES:

*Please contact your Chesterton representative for larger sizes. Standards and approvals available on page 92.

- Automatic sealing for optimal sealing force with minimal frictional resistance
- Flexible lip design compensates for excessive radial space in worn equipment
- Advanced material technology withstands scored, damaged surfaces
- Positive rake lip profile wipes away contamination from mating surfaces
- Fusion Program

- Single acting, U-Cup design, zero leakage throughout the entire operating range
- Abrasion-resistant design, excellent performance in hydraulic applications
- Lip geometry stabilizes seal to prevent twisting and to ease installation
- Application-specific solutions, including anti-extrusion ring, energizer, and dynamic/static lip designs

P20K[™]

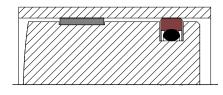
Heavy-Duty Bidirectional Hydraulic Seal

Robust seal design combined with high performance polymer technology for most demanding heavy-duty, high-pressure applications.

<u> </u>

SPECIFICATION	5			Č,
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min)
AWC704 (FKM)	6 - 305 (1/4 - 12)	-30 - 200 (-20 - 400)	16 (2 320)	1,5 (300)
AWC800 (EU)	6 – 1 400 (1/4 – 55)	-50 – 85 (-60 – 185)	103,5 (15 000)	1 (200)
AWC808 (AU)	6 – 400 (1/4 – 15,75)	-20 - 85 (-4 - 185)	40 (5 800)	0,5 (100)
AWC825 (EU)	6 – 1 400 (1/4 – 55)	-35 – 75 (-30 – 165)	52 (7 500)	0,5 (100)
AWC830 (EU)	6 – 254 (1/4 – 10)	-50 – 120 (-60 – 250)	52 (7 500)	0,9 (185)
AWC860 (EU)	6 - 508 (1/4 - 20)	-50 – 120 (-60 – 250)	103,5 (15 000)	1,25 (250)

PRODUCT PROFILES:



- Ideal replacement for 2-, 3-, or 4-piece cap seal assemblies
- Excellent extrusion resistance
- Abrasion-resistant design withstands demanding environments
- Outstanding resistance to shock loading and pressure spikes

PCCS

Cap Seals

High performance, dual component system for bidirectional sealing in hydraulic and pneumatic applications.

***FKM energizer

SPECIFICATIONS				t d
Cap Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Pressure MPa (psi)	Speed m/s (ft/min) Reciprocating/ <i>Rotary</i>
**AWC800 (EU)	up to 1 400 (55)	-35 – 85 (-30 – 185)	34,5 (5 000)	0,85 (185)/ <i>0,5 (100)</i>
**AWC808 (AU)	6 - 400 (1/4 - 15,75)	-20 – 85 (-4 – 185)	40 (5 800)	0,5 (100)/ <i>0,25 (50)</i>
**AWC860 (EU)	up to 508 (20)	-35 – 120 (-30 – 250)	34,5 (5 000)	1,25 (250)/0,75 (150)
***AWC300 (glass filled PTFE)	up to 600 (24)	-35 – 120 (-30 – 250)	34,5 (5 000)	15 (3 000)/ <i>5,0 (960)</i>
***AWC400 (carbon filled PTFE)	up to 600 (24)	-35 – 120 (-30 – 250)	34,5 (5 000)	15 (3 000)/ <i>5,0 (960)</i>
**AWC500 (bronze filled PTFE)	up to 600 (24)	-35 – 120 (-30 – 250)	34,5 (5 000)	15 (3 000)/ <i>5,0 (960)</i>
				**NBR energizer

PRODUCT PROFILES:

*Please contact your Chesterton representative for larger sizes. Standards and approvals available on page 92.

- Second-generation PTFE and high performance polymers offer improved operation
- Compression seal design increases sealing force with system pressure
- Dramatically reduces friction and eliminates "Stick-Slip" effect
- Excellent chemical- and heat-resistant characteristics

ANCILLARY DEVICES

16K / 17K

Bearing Bands Strips for Hydraulic and Pneumatic Applications

High performance, replaceable bearing strips for heavy-duty hydraulic cylinders and forming machines. The exceptional physical properties and built-in lubricants make them suitable for use on rams or pistons in most of reciprocating applications.

ന

SPECIFICATIONS

Si Echilentions				\rightarrow \sim
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Compression Strength MPa (psi) ASTM D695	Speed m/s (ft/min)
AWC640 and 640S** thermoset polyester resin	20 – 1575 (0.8 – 62)	-30 – 120 (-22 – 248)	345 (50.000)	1,0 (200)

	16K Metric De	esigns		17K Inch De	signs
Cross section (S), mm	Height (H ₁), mm	Diameter range (OD), mm	Cross section (S), inch	Groove width (L), inch	Diameter range (d/D), inch
	15	300 – 1575		1	12 – 62
2,5	20	300 – 1575	0.125	1.5	12 – 62
4,0	25	300 – 1575	0.125	2	12 – 62
	30	300 – 1575			

- Prevents metal-to-metal scoring, helps prolong equipment life
- Reduces radial movement, extends seal life
- Built-in lubricant for lower coefficient of friction between mating surfaces
- Split continuous coil accommodates large diameter equipment

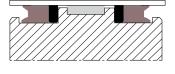
Coils in Meter Length	Groove Height mm	Cross Section mm	Diameter Range (OD), mm		
	5,60				
	9,7				
	15,00	2.50			
	25,00	2,50	300 – 1575		
	30,00				
	40,00				
	15,00				
	25,00	3,00			
	30,00				
	25,00	4,00			

METRIC DESIGNS AWC 640S (SPIRAL)

Spiral Coils Diameter (Ø Spiral) Cylinder Diameter Size	Groove Height mm	Cross Section mm
20, 40, 60, 80, 100	5,60	2,50
40, 60, 80, 100, 140	9,70	2,50
60, 80, 100, 120, 140	15,00	2,50
100, 120, 160, 200	20,00	2,50
80, 100, 120, 160, 200	25,00	2,50

*Please contact your Chesterton representative for larger sizes. Nonstandard sizes on request. ** AWC640S – Spiral Coils tailored to cylinders diameter sizes.

Standards and approvals available on page 92.


Polymer Seals

9K

Anti-Extrusion Rings for Hydraulic Applications

Designed to prevent seals from extruding into equipment clearances for heavy-duty, high-pressure applications.

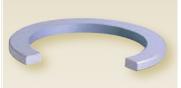
SPECIFICATIONS				\mathfrak{O}
Material (designation)	Size Range* mm (inch)	Т	emperature °C (°F)	
AWC520 (Virgin PTFE)	6 - 600 (1/4 - 24)	Cryogenic -	230 (Cryogenic	– 450)
AWC650 (Acetal)	6 – 381 (1/4 – 15)	-30 – 90 (-20 – 200)		
AWC665 (Nylon with MoS ₂)	>381 – 1 450 (>15 – 57)	-40 -	105 (-40 – 212)	

6-600 (1/4-24)

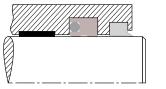
ORB

PRODUCT PROFILES:

AWC663 (PA-6)


SPE

-40 - 105 (-40 - 212)



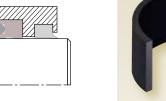
- Prevents extrusion of sealing element into equipment clearances: improves MTBR
- Machining process allows the flexibility to create any size
- Available in various profiles and materials
- Split design for ease of installation

18K / 19K

Bearing Bands for Hydraulic and Pneumatic Applications

High performance replaceable bearing bands for cylinders.

SPECIFICATIONS				$\hat{\Sigma}$
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Compressive Strength MPa (psi) ASTM D695	Speed m/s (ft/min)
AWC660 40% glass-filled nylon	to 508 (to 20)	-40 – 121 (-40 – 250)	158,8 (23 000)	1,25 (250)


	19K Metric Designs				18K Inch Designs			
	Cross section (S), mm	Height (H ₁), mm	Outer Diameter range (OD), mm		Cross section (S), inch	Height (H ₁), inch	Outer Diameter ra (OD), inches	
	25	5	20 – 140			0,375	1 – 4	
		9	55 – 220	0.125		0,500	1,5 – 6	
2,5	14	70 – 400		0.125	0,750	3,5 – 8		
		24	315 – 400			1,000	4 – 20	

PRODUCT PROFILES:

18K	19K

*Please contact your Chesterton representative for larger sizes. **Other materials are available upon request.

Standards and approvals available on page 92.

ange

- Heat-stabilized nylon the same carrying load as bronze
- Replaceable bearings prevent metal-to-metal contact and prolong equipment life
- Reduces radial movement, therefore extending seal life
- Split design minimizes downtime

POLYMER SEALS – HYDRAULIC AND PNEUMATIC SEALS

WR

Bearing Bands for Hydraulic and Pneumatic Applications

Custom bearing bands for hydraulic and pneumatic applications.

SPECIFICATIONS			ų	\rightarrow \checkmark
Material** (designation)	Size Range* mm (inch)	Temperature °C (°F)	Compression Strength MPa (psi) ASTM/ISO Testing	Speed m/s (ft/min)
AWC630	25 – 152	-45 – 175	138,1 (20 000)	1 (200)
Unfilled PEEK	(1 – 6)	(-50 <i>–</i> 350)	ASTM D695	
AWC635	25 – 152	-45 – 175	179,5 (26 000)	1 (200)
Glass-filled PEEK	(1 – 6)	(-50 – 350)	ASTM D695	
AWC650	25 – 381	-31 – 73	55,2 (8 000)	1 (200)
Acetal (POM)	(1 – 15)	(-25 – 165)	ASTM D695	
AWC665	381 – 1 450	-40 – 105	96,7 (14 000)	1 (200)
Nylon with MoS ₂	(15 – 57)	(-40 – 212)	ISO 604	

Applicable standards: IDIN/ISO 10776

PRODUCT PROFILES:


*Please contact your Chesterton representative for larger sizes. **Other materials are available upon request

STATIC SEALS

20KD

High Performance O-Ring, Quad-**Ring, and D-ring Replacements**

Chesterton 20K D-Ring is a continuous compression seal designed for use in static applications and is often applied as an upgrade from conventional face seals or O-Ring designs.

WRTP

WRUP

SPECIFICATIONS Size Range^{*} Material Temperature °C (°F) Pressure Speed (designation) mm (inch) MPa (psi) m/s (ft/min) AWC704 (FKM) 6 - 305 (1/4 - 12) -30 - 200 (-20 - 400) 16 (2 320) 1,5 (300) AWC800 (EU) 6 - 1 400 (1/4 - 55) -50 - 85 (-60 - 185) 103,5 (15 000) 1 (200) AWC808 (AU) 6 - 400 (1/4 - 15,75) -20 - 85 (-4 - 185) 40 (5 800) 0,5 (100) AWC825 (EU) 6 - 1 400 (1/4 - 55) -35 – 75 (-30 – 165) 52 (7 500) 0,5 (100) 0,9 (185) AWC830 (EU) 6 - 254(1/4 - 10)-50 - 120 (-60 - 250) 52 (7 500) AWC860 (EU) 6 - 508 (1/4 - 20) -50 – 120 (-60 – 250) 1,25 (250) 103,5 (15 000)

PRODUCT PROFILES:

*Please contact your Chesterton representative for larger sizes. Standards and approvals available on page 92.

- Replaceable bearings: a cost-effective method for improving equipment performance
- Reduces radial movement, prevents metal-to-metal contact, ande extends seal life
- Custom wear rings eliminate unnecessary modifications
- Machining process allows the flexibility to create any size

- Upgrade performance of conventional face seal and O-Ring designs
- Superior wear extrusion and resistance versus conventional methods
- Machining process allows the flexibility to create any size

BEARING AND GEARBOX PROTECTION

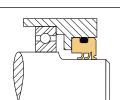
Matrix Rotary Seal

Split Bearing and Gearbox Protection

Easy-to-Install, Patented Split Rotary Seal for Worn Shaft Applications.

SPECIFICATIO	NS			Ē		d	\mathcal{T}
Seal Housing	Sealing Element	Shaft Size Range mm (inch)	Temp- erature °C (°F)	Speed m/s (ft/min)	Pressure bar (psi)	Eccentricity mm (inch)	Chemical Resistance
AWC800	1727NP	50 – 762 (2 – 30)	85 (185)	15 (3000)	0.3 (5)	up to 1,5 (0.060)	Compatible with all commonly used bearing
AWC860	1727NP	50 – 762 (2 – 30)	120 (250)	15 (3000)	0.3 (5)	up to 1,5 (0.060)	and gearbox oils and greases

Ø

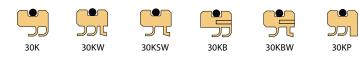

PRODUCT PROFILE:

30K

Bearing and Gearbox Protection

Advanced sealing protection technology keeps the lubricant in and the dirt out for long-term sealing.

ကာ


D

SPECIFICATIONS

Material (combination) (adapters/sealer rings)	Size Range* 1 mm (inch)	°C (°F)	Speed m/s (ft/min)	Pressure MPa (psi)	Recommended Use	Mating surface (Rockwell C)
AWC100 (PTFE) Polyimide					Excellent dry Excellent low viscosity No water and steam	≥45
AWC300 (PTFE) Molybdenum & glass	20 - 600	-20 – 149	Up to 20	0,07	Excellent high viscosity Good dry and good in water	≥55
AWC400 (PTFE) Carbon & graphite	(0,787 – 24)	(-30 – 300)	(4 000)	(10)	Excellent in water Good dry and low viscosity	≥55
AWC510 (PTFE) Mineral (FDA listed)					Excellent dry Good in water and steam No petroleum liquids	≥45

Performance depends on concurrent conditions including shaft hardness, shaft surface roughness, material, lubrication, temperature, and pressure.

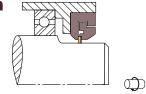
PRODUCT PROFILES:

*Please contact your Chesterton representative for larger sizes. Standards and approvals available on page 92.

- Engineered for large runout and worn equipment
- Eliminates cumbersome equipment teardown and minimizes downtime
- Excludes external contamination, preserves internal lubrication
- Flexible design provides ease of installation
- Manufactured to custom equipment dimensions and requirements
- Covers all industries including steel, mining, paper, and agricultural

- New designs and materials to outperform conventional lip seals
- High performance PTFE compounds offer advanced wear and abrasion resistance
- Unique design provides lower friction and decreased shaft wear
- High performance lip seals prevent contaminants from entering housing

Polymer Seals


POLYMER SEALS – HYDRAULIC AND PNEUMATIC SEALS

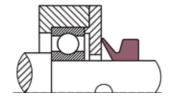
33K

SPECIFICATIONS

Split Bearing and Gearbox Protection

Unitized split seal for bearing and gearbox protection.

Material (combination) (adapters/sealer rings)	Size Range* T mm (inch)		Speed m/s (ft/min)	Pressure MPa (psi)	Recommended Use	Mating Surface (Rockwell C)
AWC800 Adapters (EU)						
AWC100 (PTFE)	25 – 610	85	12,7	0,07	Excellent dry	≥45
Polyimide	(1 – 24)	(185)	(2 500)	(10)	Excellent low viscosity	
AWC300 (PTFE)	25 – 610	85	12,7	0,07	Excellent high viscosity	≥55
Molybdenum & glass	(1 – 24)	(185)	(2 500)	(10)	Good dry and good in water	
AWC400 (PTFE)	25 – 610	85	12,7	0,07	Excellent in water	≥55
Carbon & graphite	(1 – 24)	(185)	(2 500)	(10)	Good dry and low viscosity	
AWC860 Adapters (EU)						
AWC100 (PTFE)	25 – 457	121	12,7	0,07	Excellent dry	≥45
Polyimide	(1 – 18)	(250)	(2 500)	(10)	Excellent low viscosity	
AWC300 (PTFE)	25 – 457	121	12,7	0,07	Excellent high viscosity	≥55
Molybdenum & glass	(1 – 18)	(250)	(2 500)	(10)	Good dry and good in water	
AWC400 (PTFE)	25 – 457	121	12,7	0,07	Excellent in water	≥55
Carbon & graphite	(1 – 18)	(250)	(2 500)	(10)	Good dry and low viscosity	


Performance depends on concurrent conditions including shaft hardness, shaft surface roughness, material, lubrication, temperature, and pressure.

ROTARY SEALS

50K

Mill Rotary Face Seal

Designed to protect against ingress of solid particles, dust, and fluids while sealing lubricants in rotary applications.

OPERATIONAL CONDITIONS

Elastomers	NBR70	FKM 70
Lubricating greases	-20°C – 100°C (-4°F – 212°F)	-20°C – 150°C (-4°F – 302°F)
Water	5°C – 100°C (41°F – 21°F)	5°C – 80°C (41°F – 176°F)
Surface speed m/s (ft/min)	12 m/sec (2 362 ft/min)*	20 m/sec* (3 937 ft/min)
Technical pressure MPa (psi)	0,03 (4,35)	0,03 (4,35)
Size range mm (inch)** shaft dia	200 – 1 650 (8 – 65)	200 – 1 650 (8 – 65)

* At over 8 m/s (1574 ft/min) the seal has to be supported in axial direction while over 12 m/s radial (2362 ft/min) retention is needed.

PRODUCT PROFILES:

**Please contact your Chesterton representative for larger sizes. Standards and approvals available on page 92.

- Split design eliminates the need for equipment disassembly
- New design and materials proven to outperform conventional lip seals
- Patented design combines high performance PTFE and polymer materials
- Filled PTFE materials provide high wear and abrasion resistance

- High performance elastomer materials
- Long elastic memory and good resistance to aging
- Optimized lip interference with low friction
- Direct retrofit, no equipment modifications required

51K

Mill Rotary Seal

Designed to provide long-lasting sealing and superior protection for rotary applications, bearing houses, and gearboxes across the heavy industries.

OPERATIONAL CONDITIONS

Elastomers	NBR80+PTFE	HNBR 70	FKM70+PTFE
OD fabric	Textile +NBR	Textile + HNBR	Textile + FKM
Materials of garter spring	AISI 302-316	AISI 302-316	AISI 302-316
Lubricating greases	-20°C – 100°C (-4°F – 212°F)	-30°C – 150°C (-22°F – 302°F)	-20°C – 200°C (-4°F – 392°F)
Mineral oils	-20°C – 100°C (-4°F – 212°F)	-30°C – 150°C (-22°F – 302°F)	-20°C – 200°C (-4°F – 392°F)
Water	5°C – 100°C (41°F – 212°F)	5°C – 150°C (41°F – 302°F)	5°C – 100°C (41°F – 212°F)
Surface speed m/s (ft/min)	15 (2 952 ft/min)	20 (3 937 ft/min)	25 (4 921 ft/min)
Technical pressure MPa (psi) 51K, 51KW, 51KL Solid	0,05 (7,25)	0,05 (7,25)	0,05 (7,25)
Technical pressure MPa (psi) 51K, 51KW, 51KL Split	No pressure can be applied	No pressure can be applied	No pressure can be applied
Technical pressure MPa (psi) 51HP Solid	0,4 (58)	0,4 (58)	0,4 (58)
Size range mm (inch)* Seal OD	300 – 1 200 (12 – 47)	300 – 1 200 (12 – 47)	300 – 1 200 (12 – 47)

* Please contact your Chesterton representative for other sizes.

PRODUCT PROFILES:

 Specially designed seal lips combined with autolubricated elastomer to reduce friction

- Solid and split versions are available
- Direct retrofit, no equipment modifications required

52K

Mill Rotary Seal

OPERATIONAL CONDITIONS

Elastomers

Material of metal case

Materials of garter spring*

Lubricating greases

Mineral oils

Water

Surface speed m/s (ft/min)

Technical pressure MPa (psi)

Size range mm (inch)** Seal OD

PRODUCT PROFILES:

Designed to provide long-lasting sealing and superior protection for rotary applications, bearing houses, and gearboxes across the heavy industries. The unique design with flexible stiffener ring ensures improved fitting in the seal cavity and allows installation in stuffing boxes without end covers.

NBR80+PTFE

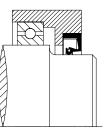
C72 tempered

AISI 302-316

-30°C – 100°C (-22°F – 212°F)

-30°C – 100°C (-22°F – 212°F)

5°C – 100°C (41°F – 212°F)


15 (2 952)

0,05 (7,25)

300 - 1 200 (12 - 47)

52KHP

52KW

FKM70+PTFE

C72 tempered

AISI 302-316

-20°C – 200°C (-4°F – 392°F)

-20°C – 200°C (-4°F – 392°F)

5°C – 100°C (41°F – 212°F)

25 (2 952)

0,05 (7,25)

300 - 1 200 (12 - 47)

*On request, PVC cover to avoid dust entering garter spring ** Please contact your Chesterton representative for other sizes.

Unique lip design

- Specially designed seal lips combined with autolubricated compound to reduce friction
- Metallic flexible stiffening ring is used to allow mounting without end cover

 Direct retrofit, no equipment modifications required

POLYMER SEALS – HYDRAULIC AND PNEUMATIC SEALS

53K

Mill Rotary Seal

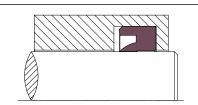
Designed to provide long-lasting sealing and protective solutions that withstand high speeds and misalignment of large rolls in heavy industries.

Elastomers	NBR70+PTFE	FKM 70+PTFE
Material of metal case	Fe-PO3	Fe-PO3
Material of steel filler ring	Fe37	Fe37
Material of spring carrier	AISI 301	AISI 301
Materials of garter spring	AISI 316	AISI 316
Lubricating greases	-20°C – 100°C (-4°F – 212°F)	-20°C – 200°C (-4°F – 392°F)
Mineral oils	-20°C – 100°C (-4°F – 212°F)	-20°C – 200°C (-4°F – 392°F)
Surface speed m/s (ft/min)	25 (4 921)	25 – 35 (4 921 – 6 889)
Technical pressure MPa (psi) 53K, 53KW, 53KL, 53KHS 53KLPT	0,05 (7,25)	0,05 (7,25)
echnical pressure MPa (psi) 53KHP	0,1 (14,5)	0,1 (14,5)
Size range mm (inch)* Seal OD	300 - 1 200 (12 - 47)	300 – 1 200 (12 – 47)

 $\ensuremath{^*}\xspace$ Please contact your Chesterton representative for other sizes.

PRODUCT PROFILES:

53KW



- Unique lip preloaded system with highly elastic garter-finger spring
- Specially designed seal lips combined with autolubricated compound to reduce friction
- Large shaft runout compensation capability
- Maintains lube oil film underneath the lip for longer seal life

R22KN5

Split Rotary Seal

High performance, proven design for slow rotating applications exposed to large shaft runout.

PECIFICATIONS			t t
Material (designation)	Size Range* mm (inch)	Temperature °C (°F)	Speed m/s (ft/min)
AWC700 (FKM)	6 – 152 (1/4 – 6)	-30 – 200 (-20 – 400)	1,5 (300)
AWC800 (EU)	6 – 1 400 (1/4 – 55)	-50 – 85 (-60 – 185)	1 (200)
AWC808 (AU)	6 – 400 (1/4 – 15,75)	-20 - 85 (-4 - 185)	0,5 (100)
AWC830 (EU)	6 – 254 (1/4 – 10)	-35 – 75 (-30 – 165)	0,9 (185)
AWC850 (EU)	6 – 254 (1/4 – 10)	-50 - 104 (-60 - 220)	0,9 (185)
AWC860 (EU)	6 – 508 (1/4 – 20)	-50 – 120 (-60 – 250)	1,25 (250)

PRODUCT PROFILE:

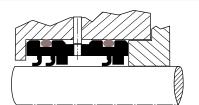
R22KN5

Depending on the seal height and cross section, the split joint can be interlock arrow cut or butt cut.

*Please contact your Chesterton representative for larger sizes.

- - Flexible dynamic lip design for large shaft runout compensation
 - Split configuration simplifies installation
 - Robust static lip design allows stacked set arrangement and provides stability
 - Excellent abrasion resistance, withstands demanding environments

Standards and approvals available on page 92.



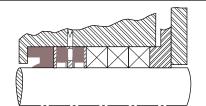
SP

30KC

Seal for Viscous Fluids and Powders

High performance, proven cartridge design for sealing powders and viscous fluids.

 $\widehat{}$


SPECIFICATIONS

SPECIFICATIONS							ų)
Material** (combination) (adapters/sealer rings)	Shaft Size* mm (inch)	Tempera- ture °C (°F)	Speed m/s (ft/min)	Pressure MPa (psi)	Mating Surface (Rock- well C)	Surface Finish µm Ra (µ inch)	Recommended Use***
AWC100 (PTFE) Polyimide					45	Dynamic	Excellent dry Excellent low viscosity (<2 000 cp) Powders, oil, resins, glues, paints No water or steam
AWC300 (PTFE) Molybdenum & glass		0 -20 - 150 (-30 - 300)	Up to 5 (984)	to 1 (150)	55	0,2 - 0,4 (8 - 16) Static	Excellent high viscosity (>2 000 cp) Good in dry, water, or steam
AWC400 (PTFE) Carbon & graphite					55	0,4 - 0,8 (16 - 32)	Excellent in water or steam Good dry and low viscosity powders, asphalt, clay, slurries
AWC510 Mineral (FDA listed)					45		Excellent dry Good in water or steam chocolate and syrups No petroleum liquids

14K and 14KL

Restriction Bushing

A robust restriction bushing for rotating equipment. Tremendously extend the life of mechanical packing and mechanical seals in cases of solid particles entering fluid.

SPECIFICATIONS Outer Diameter Size Range* Material Temperature °C (°F) pH Range (designation) mm (inch) AWC800 (EU) Up to 85 (185) 4 - 1038.1 - 660.4 (1.5 - 26) AWC808 (AU) 38,1 - 400 (1,5 - 15,75) Up to 85 (185) 4 - 10 AWC860 (EU) 38,1 - 660,4 (1,5 - 26) Up to 120 (250) 4 - 10AWC300 PTFE (glass-filled) Up to 200 (400) 38,1 – 381 (1,5 – 15) 0 - 14 AWC510 PTFE (polymide-filled) 38.1 - 381 (1.5 - 15) Up to 200 (400) 0 - 14 AWC520 PTFE (virgin) 0 - 14 38,1 – 381 (1,5 – 15) Up to 200 (400) **PRODUCT PROFILES:**

R14L

R14KL

R14K R14KRB2P R14KRBS R14KPF

*Please contact your Chesterton representative for larger sizes.

Standards and approvals available on page 92.

- Split design simplifies installation
- Prevents particles from entering the stuffing box, extending packing and seal life
- Tapered lip design controls fluid bypass
- Designed for pumps and other rotating equipment such as agitators, mixers, and refiners

- ntact your Chesterton
- * Please contact your Chesterton representative for larger sizes

to equipment dimensions

 Outperforms conventional packing, sealing viscosity fluids, and dry powders
 Decreases downtime, easy to install, versatile cartridge design
 Improves performance of compression packing, distinct PTFE materials
 Custom-designed cartridges made

- ** Fluoroelastomer O-Rings provided (FDA listed with AWC510)
- *** Runout to 0,15 mm (0,05")

Polymer Seals

INDUSTRIAL LUBRICANTS AND MRO PRODUCTS

EFFICIENCY, PERFORMANCE, AND PRODUCTIVITY

Chesterton offers products and total system solutions for production process, facility, and maintenance needs.

- Lubricants and greases
- Maintenance specialities

- Cleaners and degreasers
- Metalworking fluids and corrosion control

State-of-the-art technologies, environmentally acceptable alternatives, and strict quality processes contribute to fulfilling the customers' expectations:

- Increased productivity
- Lowered costs
- Reduced disposal and labour costs

In partnership with our worldwide distribution channels and factory-trained local specialists, Chesterton offers superior value and outstanding customer service, technical support, and delivery.

In these pages, you will find an overview of our products. For in-depth, individual product information, ask your local Chesterton Specialist for further information.

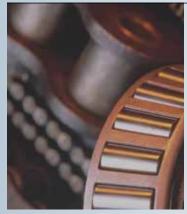
Industrial Lubricants and MRO Products Application Guide

Please contact your local Chesterton Representative to help you select the best product for your application.

Lubricants		Chains	Bearings	Open Gears	Pneumatics	Wire Rope and Cable	Control Valves		High Temp.	Low Temp.	Load Carrying Ability	Water Resistance	Food Acceptance NSF, Halal, Kosher
LIQUID LUBRICANTS			ă	0			Ŭ					≤ ∝̃	
601(E)		√++			√ +	√ ++		e	√+	√+	√ ++		H2
610 Plus, 610 MTPlus, 610HT(E)		√++	\checkmark			√ +		and	√++	√+	√ +		H2
607(E)	ion	√++	\checkmark			√+		Performance	√++	√+	√ +		
650	icat	√++			√ ++	√ ++		erf	√+	√+	√ ++		H1
690 FG(E)	Applications	√++			✓					\checkmark	√ +	✓	H1, Halal, Kosher
715/715G(E)	◄	√+		√ ++		√ ++		Relative				√ ++	H2
652(E)		√+			√ ++	√ +	\checkmark	æ	√+	√+	√ ++		H2
GREASES] [
615] [√	√+	√		√	√+		\checkmark	√+	√ +	√ ++	H2
635			√ ++				√ ++		√+	√+	√ ++	√ ++	H2
625(E)			√+				√+		✓	√	√ +	√ ++	H1, Halal, Kosher
630		√+	√++	 ✓ 			√++		√+	√+	√ +	√ ++	H1

			Clear	ns Petroleu	er-Based A m Oil, Grea Dust, Biode	ses, Natura	al Oils,	Cleans R Water	a sed Acid lust, Hard Scale, radable		rent- sed
Clea	ners a	nd Degreasers	360(E) Phosphate- Free Cleaner	235(E) SSC	803(E) IMS II	KPC 820(E)	218 HDP(E) Pressure Wash	338(E) Super Rust Remover	346(E) Descaler and Chemical Cleaner	274(E) Industrial Degreaser	276(E) Electronic Component Cleaner
		Heavy Oil, Adhesives, Glues		✓			✓			√	
	oo sit	Grease, Petroleum Oil, Dirt	✓	√ +	√ ++	√ ++	√+			√+	√ +
	Dep	Natural Oils—Animal Fat, Vegetable Oil	√	✓	√ +	✓	✓				√ +
	Soil/Deposit	Scale, Hard Water Deposits						✓	√ ++		
	0)	Rust and Oxidation						√ ++	\checkmark		
	Parts Degreasing Shop	Manual Brush or Wipe	√+	√+	√ ++	√ ++	✓			√+	
		Parts Degreasing Station	✓		√ +	√ +				√++	
		DipTank	√	\checkmark	√++	√ +				√++	
		Steam Cleaning		√ ++	√ +	\checkmark	√+				
		Pre-Cleaning Parts/Machinery	√+	√+	√++	√ +	√+				
		Agitation Tank				✓	√ ++			√+	
	Parts Degreasing Production	Dip Tank	√+	√+	√ ++	√ +	✓			\checkmark	
tion	Parts greasi oducti	Pressure Washing		√ +			√ ++				
Application	Prog	Ultrasonic				√ ++				√+	
App		Spray Booth/Spray Tunnel					√ ++				
		Closed Circulation, Pipeline	√	✓	√ +	√ +	√+				
	t	Tanks and Vessels	√+		√ ++	√ +	✓				
	JPI	Food Processing Equipment	√++	✓	√ +	√ +	✓			\checkmark	
	Machinery/Plant Cleaning	Building Structures, Floors, and Walls	√+	√ ++	√ ++	√ ++	✓				
	Ğ	Floor Scrubbers	✓	\checkmark	✓	√ ++	√ ++				
	Ř	Coolers, Condensers, Heat Exchangers						√ ++	√ ++		
		Electrical Motors—Non-energized		√ ++	√++	√ +	\checkmark				√ +

√++ = Best Choice


√+ = Better Choice

 \checkmark = Good Choice

INDUSTRIAL LUBRICANTS AND MRO PRODUCTS

Lubricants and Greases

Chesterton's lubrication program provides you with expertise and support for your entire production process and maintenance operations.

Improve reliability

Increase productivity

Chesterton lubrication programs will:

- Extend equipment life
- Reduce costs
 - Increase profitability

Key applications include:

Wire rope and cable

Chains

Bearings

Pneumatics

 Open gears
 Thread lubrication/ anti-seize

н.

- Valves
- Extreme pressure applications

LIQUID LUBRICANTS

601(E)

Chain Drive Pin and Bushing Lubricant—General Service

Premium-quality, light oil that penetrates between the close clearance of chain drive bushings and pins to provide critical lubrication.

Product Characteristics

Rapid penetration E.P. additives increase load carrying ability No dirt and dust buildup No sticky lubricant residues Long-lasting, non-drying film -23°C – 150°C (-10°F – 300°F) **Available Container Sizes:** Aerosol, 5 I, 20 I, 2 Applications

Chain-driven machinery Conveyors Packaging equipment Hoist chains Forklift trucks Chain saws

Available Container Sizes: Aerosol, 5 l, 20 l, 208 l Product Availability: 5 l Europe warehouse only (3,8 l is the equivalent size from USA)

607(E) HTS

Lubricating Fluid—High Temperature Synthetic

High quality, synthetic lubricant designed to improve performance and increase the productivity of your equipment by reducing wear, varnish, and corrosion. It operates at a temperature range where petroleum lubricants are unable to function. Temperature range -30° C -250° C $(-22^{\circ}$ F -482° F).


Product Characteristics

Low evaporation Low-carbonizing High-detergency—self-cleaning E.P. additives increase load carrying ability *Available Container Sizes:* 20 l, 208 l *Available in two ISO VG Grades:* 68 & 220 *Product Availability:* Europe, Middle East, and Africa ONLY

Applications

Equipment operating at elevated temperatures Refrigerated areas Severe environments Oven and high-temperature chains Bearings Gearboxes

Standards and approvals available on pages 87 – 90.

Increases chain life

- Reduces lubricant consumption
- Reduces energy consumption

- Reduces lubricant consumption
- Reduced equipment cleaning and downtime
- Reduces energy consumption
- Increases equipment life

ndustrial Lubricants and MRO Products

60

610 Plus/610MT Plus/610HT(E)

Synthetic Lubricating Fluid—High-Temperature Service

Premium-quality, 100% synthetic fluid that cleans as it lubricates over a wide temperature range of -25° C – 270° C (- 13° F – 518° F).

Product Characteristics

Low evaporation Low-carbonizing High-detergency—self-cleaning E.P. additives increase load carrying ability *Available Container Sizes:* 610 Plus: Aerosol, 5 I, 20 I, 208 I 610 MT Plus: 20 I, 208 I 610 HT: 5 I, 20 I, 208 I *Product Availability:* 5 I Europe warehouse only (3,8 I is the equivalent size from USA)

Applications

Equipment operating at elevated temperatures Refrigerated areas Severe environments Oven and high-temperature chains Bearings Gearboxes

- Reduces lubricant consumption
- Reduced equipment cleaning and downtime
- Reduces energy consumption
- Increases equipment life

650 AML

Advanced Machinery Lubricant

Advanced environmentally and worker safe lubricant technology that outperforms the best petroleum-based lubricants on the market.

Product Characteristics

Synthetic-based, NSF H1 certified Biodegradable, low environmental impact High-detergency—self-cleaning E.P. additives increase load carrying ability *Available Container Sizes:* 475 ml, 20 L, 208 L

Applications
Air actuated valves
Pneumatic cylinders, solenoids and positioners
Conveyor chains, slideways, and wire ropes
Air mist or oil-injected lubricated bearings, and equipment
Assembly, packaging and filling machines

- Premium performance
- Reduced equipment cleaning and downtime
- Reduces energy consumption
- Increases equipment life

690 FG(E)

FG Lubricant—Food Grade

Cost-effective, high quality, multi-purpose, non-staining, penetrating lubricant; NSF authorized for incidental food contact and meets FDA standards.

Product Characteristics

Clear, colourless, odourless Safe and easy to use in bulk or aerosol -15°C – 120°C (15°F – 250°F) Bulk – Halal and Kosher certified **Available Container Sizes:** Aerosol, 5 I, 20 I, 208 I 690FG(E) Bulk: Halal/Kosher **Product Availability:** 5 I Europe warehouse only (3,8 I is the equivalent size from USA)

Standards and approvals available on pages 87 – 90.

Applications

Food, beverage, and pharmaceutical processing equipment, including: Chain drives Pistons Valves Rollers Pneumatics

- Safe to use
- Reduces energy consumption
- Increases equipment life

715(E)

Spraflex[®]/Spraflex[®] Gold

A surface lubricant for chain drives, open gears, and wire rope. Provides a long-lasting, non-extruding "wear shield" to protect equipment operating under heavy loads.

Product Characteristics

No lubricant squeeze-out Non-drip Self-adhering, flexible lubricant Resistant to acid fumes Guards against rust and corrosion *Available Container Sizes:* Aerosol, 20 I, 208 I

Applications

Chains Open gears Wire ropes and cables Equipment in wet or underwater environment **Note:** Use Chesterton's 715(E) Spraflex Gold where a clean, non-staining film is needed

- Reduces lubricant consumption
- Water-resistant
- Provides long-term equipment life

652(E)

Pneumatic Lubricant and Conditioner

High performance, low-viscosity formulation reduces up to 90% of pneumatic maintenance costs, decreases downtime and rejects. Cleans, protects, and prolongs the life of pneumatic equipment.

Product Characteristics

Will not cause sludge build-up Prevents seals/O-Rings from drying out Reduces power consumption Cleans rust, sludge, and dirt from all air tools as it lubricates Available Container Sizes: 475 ml, 20 l, 208 l Applications Air tools Cylinders Air line lubricators Air impact wrenches, hammers, drills Production air systems CNC machines Robotics Assembly line tools

- Lowers friction and reduces air cost
- Cleans and lubricates
- Prevents corrosion

GREASES

HTG NLGI #1, HTG NLGI #2

High performance, corrosion-inhibited grease with outstanding extreme-pressure capabilities and excellent water washout resistance. Temperature limit -40°C (-40°F) to 204°C (400°F).

Applications

Marine

Power

plants including:

Pulp and paper mills

Water and wastewater

Mining operations

High water, temperature environment

Steel, aluminium, and metal processing

Product Characteristics

Superior water resistance Excellent corrosion protection Compatible with most popular greases Exceptional shear resistance Antioxidants prevent hardening QBT™ Quiet Bearing Technology **Available Container Sizes:** 400 g, 18 kg, 55 kg, 180 kg HTG NLGI #2 ISO 460 grade also available.

- Extends bearing life
- Reduces downtimes
- Increases productivity
- Reduces grease consumption

635 SXC

High performance, corrosion-inhibited grease with outstanding extreme-pressure capabilities and excellent water washout resistance. 635 is synthetic-based and offers superior high-temperature stability and resistance to steam and corrosive chemicals. Temperature limit -40° C -240° C $(-40^{\circ}$ F -464° F).

Product Characteristics

High load carrying capability High-temperature stability Superior water washout resistance Excellent corrosion protection *Available Container Sizes:* 400 g, 18 kg, 55 kg, 180 kg

Applications

High water, temperature environment plants including: Pulp and paper mills Mining operations Steel, aluminium, and metal processing Marine Power Water and wastewater

625(E) CXF, 630 SXCF

High performance, food-grade, corrosion-inhibited grease with outstanding extreme-pressure capabilities and excellent water washout resistance.

625(E) CXF—Temperature limit -20°C − 204°C (-22°F − 400°F). 630 SXCF—Temperature limit -40°C − 240°C (-40°F − 464°F).

Product Characteristics

Superior water washout resistance Excellent corrosion protection Compatible with most popular greases Exceptional shear resistance Antioxidants prevent hardening or crystallisation *Available Container Sizes:* Aerosol (630 SXCF only), 400 g, 18 kg, 55 kg

Applications

Food, pharmaceutical, beverage industries Processing and packaging machines Bottling equipment Fruit feeders Paste and sauce fillers Canning machinery Meat packaging equipment Carton filling equipment

LUBRICANT DISPENSERS

Automatic lubricator dispenses Chesterton oils to chains and other critical areas.

Product Characteristics	Applications
Microprocessor-controlled, "pulse"	All Industries Including:
delivery system	Pulp and paper mills
Programmable—operates up to 12 months	Saw mills
Refillable	Mining operations
Lubricates up to 4 points	Steel mills
Sealed microprocessor	Food, pharmaceutical, beverage industries
	General industry

Versions Available

Lubri-Cup™ 500cc oiler	Battery operated
Lubri-Cup™ 500cc oiler	Machine synchronized and externally powered (DC power)
Lubri-Cup™ 500cc oiler	Machine synchronized and externally powered (AC power)

- Extends bearing life
- Reduces downtimes
- Increases productivity
- Reduces grease consumption

- Extends bearing life
- Reduces downtimes
- Increases productivity
- Reduces grease consumption

- Environmentally friendly, refillable container
- User-friendly with a large LCD
- Cost-effective

INDUSTRIAL LUBRICANTS AND MRO PRODUCTS

Lubri-Cup[™] VG Mini

Automatic single-point lubricator dispenses Chesterton grease to critical areas, eliminating over- and under-greasing.

Product Characteristics

A compact, convenient, and sturdy design that is simple to install and operate Preset dispensing rates—1, 3, 6, 9, 12 months Remote operation—up to 0,3 m (1 ft) Electrochemical operation (Nitrogen gas) Sealed microprocessor Ability to turn on and off

Applicationsi

All industries including: Mining and ore processing Power Pulp and paper Water and wastewater Steel and metal processing

Cost-effective

- Transparent container for lubricant inspection
- Reliable lubrication system

THREAD LUBRICANTS/ANTI-SEIZES

785(E) / 785 FG

Parting Lubricant

The "new generation" anti-seize compound contains a blend of ultrafine, inorganic solid lubricants in a non-carbonizing, ashless, synthetic carrier. Withstands severe temperature and pressure conditions.

Product Characteristics

Eases disassembly up to 1 204°C (2 200°F) Fills in microscopic voids No toxic heavy metals For extreme pressures up to 4 730 kg/cm² (67 570 psi) Available Container Sizes: 785(E): 200 g, 250 g, 500 g, Aerosol, 20 l 785FG: 200 g, 500 g

Applications

Bolts Screws Studs Pipe threads Press fits Pump sleeves Note: FG designates a food-grade product

- Lubricates for assembly and disassembly
- Protects against corrosion
- No need for torgue tension recalculation

783(E)

ACR

783(E) combines high performance, industrial anti-seize performance with extreme corrosion protection and water washout resistance. 783(E) is ideal when the primary cause of bolt seizure is corrosion.

Product Characteristics	Applications
Eases disassembly up to 900°C (1 652°F)	Covers all industries:
Fills in microscopic voids	Bolts
No toxic heavy metals	Screws
For extreme pressure up to 8 928 kg/cm ² (127 000 psi) Safer than traditional metallic-based anti-seizes <i>Available Container Sizes:</i> 250 g, 500 g, 24 kg	Studs Pipe threads Press fits Pump sleeves

- Extreme corrosion protection and water washout resistance
- Lubricates for assembly and disassembly

725(E)

Nickel Anti-Seize Compound

A high performance, nickel-based anti-seize that combines the extreme-pressure, corrosion-resistant, anti-seize abilities of colloidal nickel in an oil suspension that can withstand temperatures up to 1 425°C (2 597°F).

Product Characteristics

Ultrafine particles Guards against galling and corrosion Protects against self-welding Withstands extreme pressure Up to 1 425°C (2 597°F) Available Container Sizes: 250 g, 500 g, Aerosol, 20 l

Applications

Mechanical assembly of: bolts, studs, flanges, press fits, valve stems, pump sleeves, screws, bushings, gaskets, bearings



- Lubricates for assembly and disassembly
- Protects against corrosion
- No need for torque tension recalculation

INDUSTRIAL LUBRICANTS AND MRO PRODUCTS

Maintenance Specialities

Our high performance technologies are chemical tools designed to:

- Reduce the non-value-added, repetitive maintenance functions
- Reduce the volume of chemicals used
- Reduce time for mechanical maintenance operations
- Improve the reliability of equipment
- Improve worker safety

Applications include:

- Thread sealing
- Rust penetrants
- Flange and casing sealing
- Cleaners and degreasers
- Metalworking fluids
- Corrosion control

PENETRATING OIL

706(E)

Rustsolvo®

High quality, fast-acting, penetrating oil that reaches inaccessible areas and frees frozen nuts, bolts, and fittings without damaging the base metal.

Product Characteristics

Safe on plastic and painted surfaces Contains no glycols, alcohols, DMSO (dimethyl sulfoxide), or chlorinated solvents Pleasant odour

Creeps into microscopic spaces *Available Container Sizes:* 1 I, 20 I, 208 I, 200 I Europe warehouse only

Applications

Use on all corroded or seized threaded assemblies in the harshest industrial environments

Fast-acting

Safe to use

723(E) / 723FG(E)

Sprasolvo®

Fast-acting, penetrating oil in a convenient, non-flammable propellant aerosol can. Excellent for hard-to-reach areas where rust, tar, grease, and dirt may prevent easy removal of nuts, bolts, and fittings.

Product Characteristics

Pinpoint spray Safe on plastic and painted surfaces Contains no acids or chlorinated solvents Creeps into microscopic spaces *Available Container Sizes:* Aerosol

Applications

Use on all corroded or seized threaded assemblies in the harshest industrial environments **Note:** FG designates a food-grade product

- Single function—optimizes performance
- Fast-acting
- Safe to use

THREAD SEALING

GoldEnd® Tape

Heavy-duty, high-density, tear-resistant, mouldable, dry PTFE sealant tape for use on metal or plastic threads, pipes, or bolts.

Product Characteristics

-240°C – 260°C (-400°F – 500°F) Seals tightly and opens easily Non-aging, non-hardening Chemically resistant **Requires fewer wraps** Resists tearing and breakage Won't clog lines

Applications

Liquids: Steam, water, salt water air, fuels, refrigerants, acids, alkalis, all solvents Gases: Hydrogen, ammonia, oxygen, propane, butane, nitrogen Other: Pneumatic and hydraulic fittings up to 690 bar (10 000 psi)

- Seals, in many cases, with 1¹/₂ to 2 wraps—virtually all chemicals
- Adjustable by 90°, no leakage
- No waste

Economical

and shape

Creates gaskets any size

 Ease of application speeds up maintenance

FLANGE SEALING

Mouldable Polymer Gasketing

Two-part, extrudable gasketing material allows for the creation of ultrathin gaskets in any size, any shape. Never sticks to surfaces.

Product Characteristics

Applications

Resistance to oils, water, chemicals, and solvents Never sticks to surfaces Fills voids and scratches up to 6 mm (1/4 inch) deep **Remains elastic** Temperatures up to 260°C (500°F) Steam to 6,8 kg/cm² (100 psi) and 170°C (338°F)

For sealing complex mechanical assemblies

Gearboxes, inspection covers, bearing housings, fittings, oil sumps and reservoirs, turbine casings, electrical boxes, vacuum systems

Conforms to FDA standard 21CFR 175.300 and 177.2600. Caution: Not for use in contact with concentrated acids or hot concentrated caustics

WATER-BASED ALKALINE CLEANERS

Industrial and Marine Solvent II

A powerful, non-solvent based degreaser. Its advanced surfactant technology offers maximum efficiency in soil removal, especially applications where solvent use is required.

Product Characteristics	Applications
Phosphate-free, no EDTA or toxic solvents No irritating fumes	Cleaning production equipment, facilities, floors, walls, and steel structures
Compatible with pressure washers and steam cleaners	Cleaning dust, dirt, carbon black, petroleum-based oils
Available Container Sizes: 5 I, 20 I, 208 I, 1 000 I	
Product Availability: 5 Europe warehouse only	
(3,8 l is the equivalent size from USA)	Caution: Should not be used on aluminium or metals sensitive to high alkalinity. When using on painted surfaces, test small area for compatibility.

- Cost-effective—highly concentrated—dilute with water to use
- Strong, fast-acting
- Biodegradable

INDUSTRIAL LUBRICANTS AND MRO PRODUCTS

360(E)

Phosphate-Free Cleaner

Especially effective on animal fats and vegetable oils for the food industry. A versatile, industrial cleaner for environmentally sensitive areas.

Product Characteristics

Highly effective on animal fat and vegetable oil High stable foam Solvent-free *Available Container Sizes:* 20 l, 208 l, 1 000 l

Caution: Do not use on aluminium

KPC 820(E)

KPC

Balances powerful performance with environmental compliance and worker safety—the ideal choice for process degreasing.

Product Characteristics

Effective on: Oil deposits Soot and exhaust residue Lubricants and metalworking fluids Animal and vegetable fats Low residue No phosphates, harsh alkalis, or EDTA Available Container Sizes: 20 l, 208 l, 1 000 l

Applications

Applications

Meat and poultry plants

Wastewater treatment

Sludge and fungi removal

Floors, walls, tiles, concrete

Floors, pump stations

Decks, hulls, bilges Industrial

Marine

Machines

Food, pharmaceutical, and beverage industry

Bottling, canning, packaging machines

ldeal for manual, dip tank, and ultrasonic cleaning Effective for dip tank cleaning when heated to 82°C (180°F)

218(E)

HDP

Heavy-duty, concentrated, virtually non-foaming, liquid alkaline degreaser. Designed with the environment in mind, yet it handles tough degreasing applications.

Product Characteristics

Excellent rinsability Corrosion-inhibited No silicones, toxic solvents, phosphates, or EDTA Dye and fragrance-free *Available Container Sizes:* 20 I, 208 I

Applications

Spray booth washers Floor scrubbers High-pressure washers Steam cleaning equipment Can be used in food plants **Note:** Chesterton's 218 HDP(E) can be used up to 82°C (180°F)

Available from Europe warehouse only

Standards and approvals available on pages 87 - 90.

- Cost-effective—highly concentrated—dilute with water to use
- Strong, fast-acting
- Environmentally friendly biodegradable

- Cost-effective—highly concentrated—dilute with water to use
- Strong, fast-acting, yet moderate pH
- Environmentally friendly biodegradable

- Cost-effective—highly concentrated—dilute with water to use
- Long lifetime in washing equipment
- Improves worker safety no hazardous powder dust
- Environmentally friendly biodegradable

ndustrial Lubricants

and MRO Products

235(E)

SSC

Powerful cleaner removes oily and greasy deposits, waxes, loose paint, and heavy soils. Specially formulated for steam cleaning equipment.

Product Characteristics
Additives retard scale build up and clogging of steam cleaning equipment
Contains strong alkalis, emulsifiers, and surfactants
No irritating fumes
Available Container Sizes: 20 , 208

Applications Concrete Masonry Equipment (all types)

Caution: Should not be used on aluminium or metals sensitive to high alkalinity. When using on painted surfaces, test small area for compatibility.

WATER-BASED ACID CLEANERS

Super Rust Remover

Removes rust from ferrous metal and corrosion from aluminium; brightens copper, brass, stainless steel, and zinc—quickly and safely.

Product Characteristics

Removes metal oxide layer Brightens non-ferrous metals Leaves metal paint-ready Rinses clean with water Short-term corrosion protection *Available Container Sizes:* 20 I, 208 I

Applications

General Metal prefinishing of machined parts and metalwork Maintenance Restores rusted inventories, nuts/bolts Threaded assemblies, internal corrosion shafts, cast housings

346(E)

Descaler and Chemical Cleaner

Strong, acid-based, multi-use liquid, formulated with metal-protecting inhibitor for a wide range of applications.

Product Characteristics
Dissolves rust and scale while protecting base surface
Concentrated hydrochloric base and additives
Available Container Sizes: 20 I, 208 I

Applications

Steam boiler tubes Condenser water systems Water circulating equipment Concrete etching Heat exchangers

Caution: Not effective on grease, oil, and common soil.

Not for use on aluminium, painted enamel, stainless steel, or decorative metals.

- Cost-effective—highly concentrated—dilute with water to use
- Strong, fast-acting
- Improves worker safety by removing slippery surfaces
- Biodegradable

- Cost-effective—highly concentrated—dilute with water to use
- Inhibited to protect base metals
- Biodegradable

- Cost-effective—highly concentrated—dilute with water to use
- Saves on labour, maintenance costs, and fuel consumption in heat transfer equipment
- Inhibited to protect base metals
- Biodegradable

INDUSTRIAL LUBRICANTS AND MRO PRODUCTS

SOLVENT BASED CLEANERS

274(E)

Industrial Degreaser

A hard surface degreaser for industrial and marine environments.

Product Characteristics

Dissolves petroleum oil, grease, tar, and other inorganic soils Low odour, aromatic content Does not attack metal, most paints, and plastics Fast, penetrating action *Available Container Sizes:* Aerosol, 20 I, 208 I

Applications

Maintenance shops Dip tanks Hard surfaces Machined parts Recirculating and agitated parts washers

- Cost-effective
- Low evaporation, long lifetime, reduced consumption
- Improves worker safety
- High flash point

CONTACT CLEANERS

Electronic Component Cleaner

Fast evaporating, high performance, solvent based degreaser that does not contain ozone depleting solvents.

Product Characteristics

Low residue Non-chlorinated No ozone-depleting materials *Available Container Sizes:* Aerosol, 20 I, 208 I 200 I Europe warehouse only

Applications

Spray cleaning Switches, controllers, panel meters Circuit boards, contacts, levers Control panels Hard surface degreasing Equipment, motors Non-energized electrical equipment Parts in process

- Cleans quickly with a fast evaporation rate
- Does not attack plastic or metal

RECIRCULATING METALWORKING FLUIDS

372(E)

Opticool Emulsified Oils

Opticool fluids are the newest line of emulsifiable machinery coolants. Emulsified coolants are ideal where lubrication is important and operations are severe.

Product Characteristics

Unique, base oil technology Extreme-pressure capability Minimizes rancidity and odours Corrosion protection Virtually eliminates adverse skin reactions

Available Container Sizes: 20 |, 208 |, 1 000 |

Applications

Broaching, drilling, reaming Tapping, threading, milling Turning, grinding, stamping

Long sump life

 Reduced purchases, disposal, and downtime costs

 Improves part finish and tool life

NON-RECIRCULATING METALWORKING FLUIDS **388**

Synthetic Tapping Fluid

. . .

. . .

Safe, pure synthetic formula for machining operations performed at high-speed and -feed rates as well as manual or automatic single-shot cutting tool applications.

Product Characteristics	Ар
Ready to use	Тар
Metal fines do not stick	Bori
Can be used with aluminium,	Rea
and aluminium alloys	Thre
Does not smoke, fume, or mist	Dril
Essentially odourless	Mill
Excellent lubricity and heat dissipation	Мау
Available Container Sizes: 475 ml, 20 l, 208 l	

pplications

Tapping Boring Reaming Threading Drilling Milling May be used in mist applications

- Fluid, penetrates tight tolerances
- Improves part finish and tool life
- Biodegradable, contains no oil or solvents

Industrial Lubricants and MRO Products

INDUSTRIAL LUBRICANTS AND MRO PRODUCTS

CORROSION CONTROL

Moisture Shield

An efficient, clear, moisture-displacing and anti-corrosion protective film that protects metal parts and equipment for months.

Product Characteristics

Transparent film Excellent corrosion protection Penetrates fine tolerances High dielectric strength Protects new metal from corrosion *Available Container Sizes:* Aerosol, 20 I, 208 I

Applications

Parts in process, transit, or storage Electrical systems Marine industry Drying out of wet electrical parts **Note:** Where long-term protection is desired use Chesterton's 740(E) Heavy-Duty Rust Guard

- Short-term corrosion protection
- Easily removable with Chesterton's water-based or solvent based cleaners

740(E)

Heavy-Duty Rust Guard

This long-term, corrosion-preventative coating provides heavy-duty metal protection for all areas constantly exposed to humidity and corrosive fumes—without critical surface preparation.

Product Characteristics	A
Self-healing, if scratched	M
Transparent brown	Pa
Available Container Sizes: Aerosol, 5 I, 20 I, 208 I,	Pa
Product Availability: 5 I Europe warehouse only	Ρι
(3,8 l is the equivalent size from USA)	In

Applications Metal tools Parts in process Parts in storage Pumps Indoor structural steel Note: Product can be easily removed with Chesterton's 276(E) Electronic Component Cleaner or 274(E) Industrial Degreaser

- Provides up to two years corrosion protection under sheltered outdoor conditions
- Does not peel or flake
- Excellent resistance to acid, alkali, and salt air fumes

- 1

A WORLD OF PROTECTION

Industry faces adverse environmental conditions that attack components and structures which can result in compromised plant reliability and safety, as well as lost profits. Chesterton's ARC and CP coatings provide superior performance against erosion, corrosion, abrasion, and chemical attack to both metal and concrete surfaces. You can rely on Chesterton's low VOC, 100% solids protective linings to protect these surfaces in your industrial environment.

ARC Industrial Coatings Application Guide

These tables provide general guidelines for ARC product selection. Detailed product performance data can be found on product-specific data sheets and ARC chemical resistance guides.

ARC Metal Industrial Coating Systems repair, rebuild, and protect all types of industrial process equipment and structures from **abrasive**, **corrosive**, **and chemically aggressive environments**.

- Provide long-term protection
- Extend equipment life
- Cut downtime
- Reduce the need for spare parts
- Simplify maintenance procedures

<	:50°C (<120°F)	\checkmark + = Best Choice \checkmark = Goo						e										
50 – 70°C (120 – 160°F) Specialty Coatings				Erosior esistar			Corrosion, Erosion, and Chemical Attack						Abrasion Resistant					
90 – 1	90°C (160 – 195°F) 110°C (195 – 230°F)	Patching/Repair/Rebuild		eous				nic	al (Acid) hemicals			8	M		sion	E	/u	
	110 – 130°C (230 – 265°F) 130 – 150°C (265 – 302°F)		le	Erosion/Corrosion Aqueous Solution	orrosion Nical	Erosion/Corrosion Elevated Temperature	Corrosion/Moderate Chemical	Corrosion/Harsh Chemical (Acid) Inorganic	Corrosion/Harsh Chemical (Acid) Organic and Bleaching Chemicals	Corrosion/Harsh Chemical (Alkalines)	Corrosion Flue Gasses	Potable Water Low Flow	Potable Water High Flow	Mild Sliding Abrasion	Moderate Sliding Abrasion	Severe Sliding Abrasion	Severe Sliding Abrasion/ Harsh Chemical	orasion
	150 – 180°C (302 – 356°F) Wet Service Temperature		Machinable	Erosion/C Solution	Erosion/Corrosion Mild Chemical	Erosion/C Elevated 7	Corrosion Chemical	Corrosion Chemical	Corrosion/ Organic ar	Corrosion Chemical	Corrosion	Potable V	Potable V	Mild Slidi	Moderate	Severe Sli	Severe Sli Harsh Che	Impact Abrasion
	855(E)			√ +	√ +	√ +	√ +					√ +	√ +	\checkmark				
	858(E)	√ +	1	√ +	√ +	√ +								√				
	HT-T(E)			√ +	1	√ +								1				
l su	HT-S (E)			√ +	√	√ +								√				
ster	S1HB(E)			√	√		√ +											
g Sy	S1PW			\checkmark	√		√ +	√				√ +		√				
atin	S2(E)			√ +	√ +	√	√ +	√				 Image: A start of the start of	√ +	√				
	S4+(E)						√ +	√ +		\checkmark	1							
stria	S5			1	1	√ +					1			1				
npu	S7						√ +	√ +	√ +		√ +							
Metal Industrial Coating Systems	BX1(E)													1	√ +	1		✓
∎ Me	I BX1(E)													1	√ +	1		√ +
	BX2(E)													√ +	1	1		 Image: A start of the start of
	T7 AR(E)													1	1	1	√ +	
	MX FG													 Image: A start of the start of	\checkmark	\checkmark		

ARC Concrete Industrial Coating Systems repair, rebuild, and protect all concrete structures from abrasive, corrosive, and chemically aggressive environments.

	Provide long-term protection	
--	------------------------------	--

- Avoid costly structural rebuild
- Improve safety and reduce environmental hazards
- Simplify maintenance procedures
- Cut downtime

		Pitching Grout	Grading Grout	Chemical Process Spill Areas	Machine/Mechanical Room Floors	Clean Room Floors	Plating Rooms	Traffic Aisles	Food Processing/ Packaging	Interior Chemical Containment	Exterior Chemical Containment	Floor Drains	Battery Charger Rooms	Locker/Shower Rooms	Broadcastable, Non-Slip Surfaces	Bottling Lines	Pump Bases	Fabrication/ Manufacturing Floor	Manholes/ Septic Systems
	EG-1(E)	√ +	√ +																
	S1HB(E)									\checkmark	√								√ +
istri	791(E)*	√ +	√ +	√ +	\checkmark		√ +	\checkmark	\checkmark	√ +	√ +	√ +	√ +			√ +	√ +	√ +	√ +
Industrial Systems	988(E)*			√ +	√ +		√ +	\checkmark	 Image: A start of the start of	√ +	√ +	√ +	√ +				√ +	√ +	
Concrete I Coating	NVE(E)*			√ +	√ +		√ +	\checkmark		√ +	√ +	√ +	√ +				√ +	√ +	
Coat	CS2(E)**			√ +	√ +	\checkmark	√ +	\checkmark	\checkmark	√ +	>	√ +	√ +	\checkmark	\checkmark	\checkmark	√ +	\checkmark	\checkmark
	CS4(E)**			√ +	√ +	√ +	√ +		√ +	√ +	√ +	√ +	√ +	√ +	√ +	√ +	√ +	√ +	
	NVE VC(E)**			√ +	√ +	√ +	√ +		√ +	√ +	√ +	√ +	√ +	√ +	√ +	√ +	√ +	√ +	

*Are resurfacing for mechanical and chemical exposures **Are thin film for chemical protection

Ceramic Polymer Coatings are designed as a high performance, thin film internal and external corrosion and surface protection for metal and concrete substrates. Use to protect all types of structures and equipment from light abrasive mediums, corrosive and mild chemical environments.

/++ = Best Choice

Moderate Chemical

/+ = Better Choice Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good Choice
 Good
 Good
 Good
 Good
 Good
 Good
 Good
 Good
 Good
 Good

- Single coat systems—savings on application costs
- Easy to apply by spray and manual application
- Long-term corrosion and surface protection
- Low VOCs—safe to use

	Jp to 80°C (176°F)	Substrate		Application			ical Indus ers availat request)		Erosion, Corrosion, and Mild Chemical Attack	Light Abrasion
Up to 100°C (212°F) Up to 120°C (248°F) Wet Service Temperature		Steel	Concrete	External	Internal	Offshore, Sea Water	Hydrocarbon Process Crude Oil	Biogas	Corosion/ Moderate Chemical****	Light Sliding Abrasion
	CP-Synthofloor BETA 8016		Primer							
er	CP-Synthofloor 8010		Primer							
n se	Ceramic-Polymer STP-EP HV	√ +	√ +**	√ +	√ +	√ +	√ +		√ +	√+
Ceramic Polymer Coatings	Ceramic-Polymer SF/LF	√ +	√ +**	√ +	√ +	√ ++	√ +		√ +	√+
	Proguard CN 200	√ +	√ +**	√ +	√ +	√ +	√ ++	√ +	√ +	√+
e U	Proguard CN-1M & CN-OC*	√ +*	√ +**	√ +*	√ +	√ +	√ +	√ ++	√ +	√ ++
	Proguard 169 (37)***				1					

**** Please consult *** Polyurethane topcoat layer (UV & weather resistance)

INDUSTRIAL COATINGS – ARC METAL COATINGS SYSTEMS

EROSION-RESISTANT COATINGS FOR METALS

ARC 855(E)

Abrasion Control Liquid

An advanced, liquid, ceramic composite that is formulated to protect equipment from aggressive chemical attack, corrosion, and erosion.

Product Characteristics

Two-coat system Easily applied by brush or roller Minimum thickness of 250 μm (10 mils) per coat ApplicationsFans and housingsHeat exchangersWater boxesPump casings and impellersScrewsCondensersTanks and vesselsValves

Technical Data	
Dry Temperature (Max)	120°C (250°F)
Wet Temperature (Max)	65°C (150°F)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	415 – 40,7 (5 900)
Salt Fog	>10 000 hrs
Available Sizes	0,75 l; 1,5 l; 5 l; 16 l

INDUSTRIAL COATINGS

- Improves fluid flow efficiency
- Extends equipment life
- Cuts downtime
- Reduces the need for spare parts

ARC 858(E)

Abrasion Control Compound

An advanced, trowelable, ceramic composite for the repair and protection of all metal surfaces subjected to erosion, corrosion, and chemical attack.

Product Characteristics

Applied by trowel or spatula Normally applied at a thickness of 1,5 mm (60 mils) or more

Applications

Pump casings and impellers Fans and housings Pipe elbows Screws Pitted tanks and pipes Heat exchangers Valves

Technical Data	
Dry Temperature (Max)	160°C (320°F)
Wet Temperature (Max)	70°C (160°F)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	351 – 34,5 (2 800)
Available Sizes	0,25 kg; 0,94 l; 1,5 l; 5 l; 16 l

- Rebuilds damaged equipment
- Repairs and smoothes pitted surfaces
- Able to be top coated with other ARC/Ceramic Polymer Coatings

ARC HT-T(E), HT-S(E)

HT-T(E)—Spark-Testable, High-Temperature, Trowelable, Abrasion – Control Compound

HT-S(E)—Spark-Testable, High-Temperature, Sprayable, Abrasion – Control Liquid

Advanced ceramic composites that are formulated to protect equipment from corrosion and erosion in elevated temperature immersion of aqueous solutions.

Product Characteristics

HT-T(E)- Applied at a nominal thickness of 900 – 1150 μm (35 – 45 mils) by trowel or plastic applicator HT-S(E) – Easily applied by spray, brush, or roller Minimum thickness of 250 µm Tanks (10 mils) per coat Valves

Applications Hydrocyclones Heat exchangers Pump volutes and impellers Condensate pumps Offshore equipment

Technical Data	
Dry Temperature HT-T(E) (Max)	150°C (302°F)
Wet Temperature HT-T(E) (Max)	110°C (230°F)
Dry Temperature HT-S(E) (Max)	175°C (347°F)
Wet Temperature HT-S(E) (Max)	150°C (302°F)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	>140 - 14 (2 000)
Available Sizes	5 l, 16 l (only HT-S)

COATINGS FOR CORROSION, EROSION, AND CHEMICAL ATTACK FOR METALS

ARC S1PW

I

ł 1

General Purpose, Sprayable, Corrosion Protection Coating

An advanced, ceramic-reinforced, liquid composite formulated to protect metal surfaces from corrosion and MILD chemical attack.

Product Characteristics	Applications
Two-coat system	Structural steel
Easily applied by spray, brush, or roller	Cooling water systems
Minimum thickness of 250 μm (10 mils)	Pipeline coatings
per coat	Service water systems
	Wastewater structures
	Tanks

Technical Data	
Dry Temperature Service (Max)	62°C (144°F)
Wet Temperature Service (Max)	52°C (126°F)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	477 – 46,8 (6 790)
Salt Fog	>10 000 hrs
Available Sizes	5 l, 16 l

- Extends equipment life
- Spark testable for pinhole-free verification
- Reduces downtime
- Cures in service

- Low permeability provides long-term protection
- Spark testable for pinhole-free verification
- Sprayable viscosity for rapid installation

INDUSTRIAL COATINGS – ARC METAL COATINGS SYSTEMS

ARC S2(E)

Ceramic-Reinforced, Sprayable, Erosion-Resistant Coating

An advanced, liquid, ceramic-reinforced coating for the protection of all metal surfaces subject to erosive, corrosive, and severe fluid flow conditions.

Product Characteristics

Two-coat system
Easily applied by spray, brush, or roller
Minimum thickness of 250 μm (10 mils)
per coat

ApplicationsFans and housingsHeat exchangersCooling water systemsHoppersTank liningsScrubber systemsPump and valve assembliesPipeline coatings

80°C (175°F)
52°C (125°F)
436 – 42,8 (6 200)
>20 000 hrs
1125 ml (cartridge), 1,5 l; 5l; 16 l

INDUSTRIAL COATINGS

- Improves fluid flow efficiency
- = Extends equipment life
- Sprayable viscosity for rapid installation
- Spark testable for pinhole-free verification

ARC S4+(E)

100% Solids, Mineral-Reinforced, Epoxy Novolac, Acid-Resistant Coating

An advanced, liquid, polymer coating formulated to protect equipment from extreme chemical attack and corrosion.

Appli
Chemi
Chimn
Exhau
Fans a
Heat e

Applications Chemical storage tanks Chimneys and stacks Exhaust gas ductwork Fans and housings Heat exchangers Tank linings Structural steel

Technical Data	
Dry Temperature (Max)	110°C (230°F)
Wet Temperature (Max)	50°C (122°F)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	337 – 33,1 (4 800)
Salt Fog	>10 000 hrs
Available Sizes	1125 ml (cartridge), 16 l

- Provides long-term protection
- Low permeability for immersion conditions
- Sprayable viscosity for rapid installation
- Spark testable for pinhole-free verification

ARC S7

High-Temperature, Chemical-Resistant, Epoxy Novolac Vinyl Ester Coating

A low-VOC, epoxy novolac vinyl ester-based coating intended for high-temperature exposures in chemically aggressive applications where the risk for thermal cycling may be present.

Product Characteristics Two-coat system Applied via conventional airless spray systems, brush, or roller Wet film thickness of 0,25 – 0,5 mm (10 – 20 mils) per coat

Applications Flue gas ducts Heat exchangers Quench zones Flue gas particulate filters Chemical reactors Chemical storage and process tanks

Technical Data	
Dry Temperature (Max)	180°C (355°F)
Wet Temperature (Max)	135°C (275°F)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	166 – 16,3 (2 370)
Available Sizes	141

ABRASION-RESISTANT COATINGS FOR METALS

ARC BX1(E) / BX2(E)

ARC BX1(E)—Coarse Grade, Sliding Wear Compound ARC BX2(E)—Fine Grade, Sliding Wear Compound

Advanced, ceramic-reinforced composites for the repair and protection of all metal surfaces subjected to severe abrasion and erosion/corrosion.

Product Characteristics	
High volumetric ceramic particle loading	
Applied by trowel or plastic applicator tool	
BX1(E) - Applied at a minimum thickness of 6 mm (1/4") or more	
BX2(E) - Applied at a minimum thickness of 3 mm (1/8") or more	

Applications
Separators and cyclones
Hoppers/chutes
Coal pulverisers
Hydropulpers
Wear plates
Slurry pumps
Pipe elbows
Pulverised fuel lines
Screws

Technical Data	
Dry Temperature (Max)	205°C (400°F)
Wet Temperature (Max)	95°C (205°F)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	>210 - 21 (3 000)
Available Sizes	1.5 l, 5 l, 20 kg, 12 x 20 kg

- Extends asset life
- Provides long-term protection
- Easily applied for rapid installation
- Spark testable for pinhole-free verification

- Reduces the need for spare parts
- Simplifies maintenance procedures
- Extends equipment life
- Improves safety by reducing hotwork

INDUSTRIAL COATINGS – ARC METAL COATINGS SYSTEMS

ARC I BX1(E)

Impact- and Wear-Resistant Epoxy Composite

I BX1(E) is a urethane modified, amine-cured epoxy coating highly reinforced with ceramic beads and flakes for resistance to severe sliding abrasion where impact forces or rapid vibration is a concern.

Product Characteristics

High volumetric ceramic particle loading Applied by trowel or plastic applicator tool Applied at minimum thickness of 6 mm (1/4") or more

Applications

Hoppers and chutes Slurry pumps Pipes and pipe elbows Pneumatic conveyors Pulverisers and impact zones

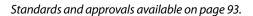
205°C (400°F)
95°C (205°F)
>211 – 21 (3 000)
20 kg, 12 x 20 kg

INDUSTRIAL COATINGS

- High impact resistance
- Reduces the need for spare parts
- Simplifies maintenance procedures
- Extends equipment life
- Improves safety by reducing hotwork

ARC T7 AR

Abrasion-Resistant, Ceramic-Reinforced Coating for High-Temperature and Chemical Exposures


A novolac epoxy/vinyl ester-based, protective barrier coating for high-temperature, chemical exposures where aggressive chemicals and highly abrasive conditions may be present.

Product Characteristics	Applications
One coat system Applied by trowel Minimum thickness of 3 mm – 4 mm	Flue gas ducts Process tanks
 (120 – 160 mils) Kit also includes ARC T7 AR VC (veil coat) for final coat smoothing Colour: Red 	Agitator blenders Valves Slurry pumps Pipes Quench zones
Technical Data	

lechnical Data	
Dry Temperature - Continuous (Max)	180°C (355°F)
Wet Temperature - Water (Max)	135°C (275°C)
Tensile Adhesion (ASTM D4541) – kg/cm ² - MPa (psi)	158 kg/cm ² – 15,5 MPa (2 249)
Available Sizes	20.4 kg

- Resists a wide range of inorganic as well as organic acids and hydrocarbon-based chemical compounds
- Resists abrasion
- Easily apply by trowel

RESURFACING COATINGS FOR CONCRETE

ARC 791(E)

100% Solids, Novolac Resin Blend, Trowel-Applied, Quartz-Reinforced Concrete, High-Build Concrete Coating

A quartz-reinforced composite that is designed to resurface and restore concrete surfaces, to protect new concrete, and to repair concrete damaged by chemical and physical abuse.

Product Characteristics

Trowelable overlayment Applied at minimum thickness of 6 mm (1/4") Can be applied to damp concrete Non-shrinking, no solvents, 100% solids Colour: Grey

Applications

Chemical containment Floor drains and sumps Process floor Equipment bedding Pump bases/grouting Structural support columns

Technical Data	
Dry Temperature (Max)	93°C (200°F)
Wet Temperature (Max)	66°C (150°F)
Compression Strength (ASTM 579) - kg/cm ² - MPa (psi)	644 – 63 (9 160)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	>35.1 – 3.4 (500) Concrete failure
Available Sizes	System Kit, Bulk Kit

1			-
X	Gre	1	
4	13	1	2

- Covers a broad range of chemical exposures
- Provides long-term protection
- Avoids costly structural rebuild
- Easily applied to vertical surfaces/non-sagging

ARC 988(E)

Highly Chemically Resistant, 100% Solids, Pure Novolac Resin-Based, Trowel Applied, Quartz-Reinforced Concrete, High-Build Concrete Coating

A high performance, quartz-reinforced composite that is designed to resurface and restore concrete surfaces, to protect new concrete, and to repair concrete damaged by severe chemical and physical abuse.

Product Characteristics	Applications
Trowelable overlayment	Chemical containments
Applied at minimum thickness of 6 mm (1/4")	Equipment bases
Can be applied to damp concrete	Secondary containment areas
Non-shrinking, no solvents, 100% solids	Sumps, trenches, and neutralization tanks
Colours: Grey, Red	

Technical Data	
Dry Temperature (Max)	93°C (200°F)
Wet Temperature (Max)	65°C (150°F)
Compression Strength (ASTM 579) - kg/cm ² - MPa (psi)	1070 – 105 (15 200)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	Greater than 35,1 – 3.4 (500) Concrete failure
Available Sizes	System Kit, Bulk Kit

Standards and approvals available on page 93.

- Resists cracking and delamination
- Reduces safety hazard caused by damaged concrete
- Easily applied to vertical surfaces/non-sagging

INDUSTRIAL COATINGS – ARC CONCRETE COATINGS SYSTEMS

THIN FILM COATINGS FOR CONCRETE

ARC CS2(E) / CS4(E)

CS2(E)—General Purpose, Thin Film, Novolac Blend, Epoxy Coating CS4(E)—Highly Chemically Resistant, 100% Novolac Resin, Epoxy Coating

Thin film, advanced composites that are formulated to protect concrete surfaces. CS2(E) is used for mild chemical attack and CS4(E) for harsh chemical attack.

Product Characteristics

Easily applied by notched squeegee, brush, roller, or spray equipment Can be applied to damp concrete High-gloss surface Non-shrinking, no solvents, 100% solids Minimum thickness of 250 – 375 µm (10 – 15 mils) per coat Colours: CS2 grey, CS4 red

Applications Concrete tanks, Chemical tanks Water intakes and dams Secondary containment Process floor areas Cooling towers Chemical plant floors Floor drains, sumps Drainage troughs Equipment bases

Technical Data	
Dry Temperature (Max)	CS2(E): 93°C (200°F) CS4(E): 80°C (175°F)
Wet Temperature (Max)	CS2(E): 52°C (125°F) CS4(E): 40°C (105°F)
Compression Strength (ASTM D695) - kg/cm2 - MPa (psi)	CS2(E): 802 (11 380), CS4(E): 895 (12 680)
Tensile Adhesion (ASTM D4541) - kg/cm ² - MPa (psi)	CS2(E): >35.1 – 3.4 (500) Concrete failure CS4(E): >35.1 – 3.4 (500) Concrete failure
Available Sizes	5 l (only CS4); 16 l

- Provides long-term protection
- Excellent resistance to permeation
- Versatile for a variety of conditions

ARC NVE System

High-Temperature and Chemical-Resistant, Epoxy Novolac Vinyl Ester Coating

A modified, novolac vinyl ester lining system intended for high-temperature exposures in chemically aggressive applications. The product may be applied as a high-build system or thin-film system.

Product Characteristics	Applications
Thin film - NVE(E) VC (Veil Coat) Applied at minimum thickness of 250 – 375 μm Colours: Red High-build - NVE(E) TC (Top Coat) Applied at minimum thickness of 6 mm (1/4") Colour: Grey	Process floors Secondary containments Trenches, drains, and sumps Tanks Pipelines

Technical Data	
Dry Temperature (Max)	200°C (392°F)
Wet Temperature (Max)	135°C (275°F)
Compression Strength (ASTM 579) - kg/cm ² - MPa (psi)	NVE(E) TC (High-Build System): 801 – 78.6 (11 400)
Tensile Adhesion to Concrete - kg/cm ² - MPa (psi)	>28 - 2,8 (400)
Available Sizes	System Kit

- Blocks chemical penetration
- Serves demanding applications
- Stops migration of chemicals

ARC S1HB(E)

High-Build, Single-Coat, Edge-Retentive Barrier Coating

A 100% solids, mineral-reinforced, high-build coating to protect metal and concrete against chemical corrosion and erosion.

Product Characteristics

High-build (1 – 2 mm/ 40 – 80 mils) coating designed for rough surfaces

Allows for one-coat application

Easily applied by heated plural component spray with brush application for touch-up

UV-sensitive pigment for QC inspection

Applications Crude oil storage tanks Wastewater clarifiers Thickener tanks Chemical storage tanks Grit chambers Wet wells/junction boxes

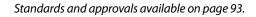
Manholes Pipelines/penstocks Cathodic protection systems

s

- Allows for one-coat application
- Cures and bonds to damp and marginally prepared surfaces
- 2:1 mix ratio simplifies heated plural component spray application

Technical Data Dry Temperature Wet Temperature Compression Strength (ASTM D695) Tensile Adhesion to Concrete - kg/cm² – MPa (psi) Available Sizes

80°C (175°F) 52°C (125°F) 875 kg/cm2 (85.8 MPa), 12460 psi >28 – 2,8 (400) 51L and 480L Kit


CERAMIC POLYMER COATINGS

CP-SYNTHOFLOOR BETA 8016 / 8010

2-component epoxy primer. This product is suitable as a primer/key coat on concrete surfaces.

8016 – Lightly filled system for suspended concrete substrates. 8010 – Unfilled system designed for slab on grade concrete. This product is for damp concrete surfaces, "green" concrete, and concrete surfaces where rising damp is expected.

Product Characteristics	Applications
Very good mechanical resistance CP-Synthofloor BETA 8016: Medium viscosity Colour: Beige CP-Synthofloor 8010: Low viscosity Colour: Clear	Concrete substrates – with suitable Ceramic Polymer/ARC Topcoat system for the following mediums: Water/sewage Alkalis Mineral oil Saline solutions Diluted acids Lubricants and fuels (incl. aviation fuel)
Technical Data	
Dry Temperature – Continuous (Max)	80°C (176°F)
Wet Temperature – Water (Max)	Short term 60°C (140°F)
Bending Tensile Strength (DIN EN ISO 178)	30 MPa (4 351 psi)
Available Sizes	CP-Synthofloor BETA 8016: 30 kg CP-Synthofloor 8010: 25 kg (larger sizes available on request)

- Excellent adhesion properties and wetting characteristics
- Simple application by airless spraying or roller

INDUSTRIAL COATINGS – CERAMIC POLYMER COATING

CERAMIC-POLYMER STP-EP HV / STP-EP

Ceramic-Polymer STP-EP is a surface-tolerant two-pack ceramic composite epoxy coating providing outstanding protection to a variety of substrates.

STP-EP – Low viscosity, thin-film system applied up to 200 microns. STP-EP HV – High viscosity, high-build system applied up to 1000 microns.

Product Characteristics

Surface tolerant (SA1, ST3, ST2) Good chemical resistance and abrasion resistance Resistance against many hydrocarbons and seawater Colours: Various RAL colours on demand, preferable grey tones

Technical Data

Dry Temperature (Max) Wet Temperature (Max) Adhesive Strength on Steel (ASTM D4541) Available Sizes

120°C (248°F) 100°C (212°F) 37 MPa (5,366 psi) 19.98 kg

Offshore and onshore constructions

Applications

Steel structures

1000 ml cartridge

Tanks Process tanks

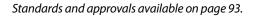
Pipelines

- Surface tolerant system low surface preparation requirements (for non-immersion)
- Economical—one-layer application up to 1000 μm (at 20°C)
- Simple application by airless spraying, roller, or cartridge system

CERAMIC-POLYMER SF/LF

Ceramic Composite Coating for Demanding Offshore/Onshore applications

A ceramic-reinforced epoxy-based coating specially designed for harsh environments.


Product Characteristics	Applications	
ISO 20340 (Performance requirements for protective paint systems for offshore and related structures) High flexibility Colours: Various RAL colours on demand	On- and Offshore facilities Splash zones Tubing and pipelines Storage tanks	
Technical Data		l
Dry Temperature (Max)	90°C (194°F)	

Dry Temperature (Max)	90°C (194°F)
Wet Temperature (Max)	80°C (176°F)
Adhesive Strength on Steel (ASTM D4541)	34 MPa (4 931 psi)
Salt Spray	10 000 hrs (DIN EN ISO 9227:2006-10), ISO 20340
Available Sizes	16 kg, 30 kg (larger sizes available on request)

- For aggressive environmental conditions
- Economical—one-layer application up to 800 μm (at 20°C)
- Simple application by airless spraying or roller

Industrial Coatings

PROGUARD

Internal Coating for Chemical Attack in Industrial Environments

A solvent-free novolac epoxy-based ceramic coating for long-term protection against chemicals and elevated operating temperatures on a wide variety of substrates.

Product Characteristics

Excellent chemical resistance Mild abrasion resistance ISO 20340 (Performance requirements for protective paint systems for offshore and related structures)

Colours: Various RAL colours on demand

Applications Storage tanks Process vessels Pressure vessels Pipelines Wastewater

Technical Data	
Dry Temperature (Max)	150°C (302°F)
Wet Temperature (Max)	120°C (248°F)
Adhesive Strength on Steel (ISO 4624)	27 MPa (3 916 psi)
Salt Spray	10 000 hrs (DIN EN ISO 9227:2006-10), ISO 20340
Available Sizes	16.5 kg, (larger sizes available on request)

Proguard CN 200 a.s. - available with antistatic properties for flammable storage applications (Note - different sizes and characteristics)

- For chemical, light sliding abrasion and erosion/ corrosion protection
- Economical—one-layer application up to 1200 μm (at 20°C)
- Simple application by airless spraying or roller

PROGUARD CN-1M / CN-OC

Chemical- and Abrasion-Resistant Coatings for Elevated Temperatures in Aggressive Atmospheres.

Chemically resistant, special epoxy novolac coatings containing low friction additives and high-tech, microparticle reinforcement.

Product Characteristics	Applications	
Excellent chemical resistance	Storage tanks	
High corrosion and abrasion protection	Process vessels	
to a wide variety of substrates	Pressure vessels	
Colours: black and anthracite	Pipelines	

Technical Data	
Dry Temperature (Max)	150°C (302°F)
Wet Temperature (Max)	120°C (248°F)
Adhesive Strength on Steel (ASTM D4541)	36 MPa (5 221 psi) on carbon steel
Available Sizes	12.5 kg / 13.33 kg (depends on resin combination) 1000 ml cartridge

- For chemical, light sliding abrasion and erosion/ corrosion protection
- Economical—one-layer application (thickness depends on viscosity version)
- Simple application by airless spraying, roller, or cartridge system

INDUSTRIAL COATINGS

PROGUARD **169 (37)**

A highly crosslinked polyurethane topcoat with excellent physical properties. The glossy, nonporous surface is durably resistant against UV radiation and weathering

Product Characteristics

According to ISO 12944-9 up to classification C5 Colours: Various colours (RAL or NCS tone)

Applications

Topcoat for existing corrosion protection system, for scopes such as: Steel structures Tanks and pipelines Bridges Automotive, railway On- and offshore facilities

120°C (248°F) - at temperatures above 100°C light

and bright colours may become yellow

11.5 kg (larger sizes available on request)

Technical Data

Dry Temperature (Max)

Available Sizes

Standards and approvals available on page 91.

ies.

- Extreme UV stability and weather resistance
- One-coat, fast curing (Opacity depends on colour. With light colours a second layer—wet-on-wet—may be necessary)
- Simple application by airless spraying or roller

Ancillary Products

803(E) Industrial and Marine Solvent

Powerful water-based alkaline cleaner to remove oil and grease from metal and concrete surfaces. Go to page 67.

277(E) Metal Surface Degreaser

A fast-acting, lowresidue, non-chlorinated, industrial-strength solvent degreaser designed to remove oils, greases, dirt, and dust. Go to chesterton.com.

ARC High Solids Spray System

Simple and efficient way to reliably spray selected ARC composites. Go to chesterton.com.

415(E) Concrete Sealer

Tough polymer coating that seals, protects, and beautifies old and new concrete, brick, rock, wood, and metal. Go to chesterton.com.

PRODUCT APPROVALS AND CERTIFICATIONS

IL and MRO Products

Product	NSF Category	FDA	Military/Federal Specification	Other
218(E) HDP	A1	-	-	-
235 SSC	A4			
235(E) SSC	A4	-	-	_
273 Electric Motor Cleaner	K2	-	_	-
273 Electric Motor Cleaner (Aerosol)	K2	_	-	-
274 Industrial Degreaser	C1, K1, K2	178.3530	_	-
274 Industrial Degreaser (Aerosol)	C1, K1, K2	178.3530	_	-
274(E) Industrial Degreaser (Aerosol)	C1, K1, K2	178.3530	_	-
274(E) Industrial Degreaser (Bulk)	C1, K1, K2	178.3530	_	-
276 Electronic Component Cleaner (Aerosol)	K2	178.882 172.884 178.3530 178.3650	-	_
276 Electronic Component Cleaner (Bulk)	К2	178.882 172.884 178.3530 178.3650	-	_
276(E) Electronic Component Cleaner (Aerosol)	K2	178.882 172.884 178.3530 178.3650	-	_
276(E) Electronic Component Cleaner (Bulk)	K2	178.882 172.884 178.3530 178.3650	_	_
277 Metal Surface Degreaser (Aerosol)	C1, K1	178.882 172.884 178.3530	-	_
277 Metal Surface Degreaser (Bulk)	C1, K1	178.882 172.884 178.3530	-	_
277(E) Metal Surface Degreaser (Aerosol)	C1, K1	178.882 172.884 178.3530	-	-
277(E) Metal Surface Degreaser (Bulk)	C1, K1	178.882 172.884 178.3530	-	-
294 CSD	C1, K1, K3	-	-	-
294(E) CSD	C1, K1, K3	-	-	-
346 Descaler and Chemical Cleaner	A3	-	-	_
3500 Valvelon	P1	-	-	_
360 Phosphate-Free Cleaner	A1, A4	-	-	-
360(E) Phosphate-Free Cleaner	A1, A4	-	-	_
390 Cutting Oil (Aerosol)	H2, P1	-	-	-
395 Tapping Lubricant	H2	-	-	—
438 PTFE Coating (Aerosol)	H2	_	_	_

PRODUCT APPROVALS AND CERTIFICATIONS

Product	NSF Category	FDA	Military/Federal Specification	Other
601 Chain Drive Pin and Bushing Lubricant (Aerosol)	H2	_	_	German Mining 62.12.22.63-2012-3
601 Chain Drive Pin and Bushing Lubricant (Bulk)	H2	_	_	German Mining 62.12.22.63-2012-3
601(E) Chain Drive Pin and Bushing Lubricant (Aerosol)	H2	-	-	German Mining 62.12.22.63-2012-3
601(E) Chain Drive Pin and Bushing Lubricant (Bulk)	H2	-	-	German Mining 62.12.22.63-2012-3
610 Plus Synthetic Lubricating Fluid (Bulk)	H2	-	-	-
610 Synthetic Lubricating Fluid (Aerosol)	H2	-	-	-
610(E) Plus Synthetic Lubricating Fluid (Aerosol)	H2	-	-	-
610 MT Plus	H2	-	-	-
615 High-Temperature Grease #1	H2	-	-	-
615 High-Temperature Grease #2	H2	_	_	_
622(E) White Grease	H1	178.3570 177.1550	_	Halal, Kosher
625 CXF, 625(E) Corrosion-Resistant, Extreme Pressure, Food-Grade Grease	H1	178.3620 178.3570	-	Halal, Kosher
629 High-Temperature White Grease	H1	178.3570 177.1550	-	_
630 SXCF (Aerosol)	H1	178.3570		_
630 SXCF (Bulk)	H1	178.3570	_	-
630(E) SXCF (Aerosol)	H1	178.3570	-	-
651 Detergent Lubricating Oil (Aerosol)	H2	_	-	German Mining 62.12.22.63-2012-3
651 Detergent Lubricating Oil (bulk)	H2	_	_	German Mining 62.12.22.63-2012-3
651(E) Detergent Lubricating Oil (Aerosol)	H2	_	_	German Mining 62.12.22.63-2012-3
651(E) Detergent Lubricating Oil (Bulk)	H2	_	-	German Mining 62.12.22.63-2012-3
652 Pneumatic Lubricant and Conditioner	H2	_	_	_
652(E) Pneumatic Lubricant and Conditioner (Bulk)	H2	_	-	_
660 Silicone Lubricant (Aerosol)	H1	181.28 178.3910 178.3570	_	-
660 Silicone Lubricant (Bulk)	H1	181.28 178.3910 178.3570	_	_

Product	NSF Category	FDA	Military/Federal Specification	Other
660(E) Silicone Lubricant (Aerosol)	H1	181.28 178.3910 178.3570	_	_
660(E) Silicone Lubricant (Bulk)	H1	181.28 178.3910 178.3570	-	_
662 FG Barrier Fluid 22	H1	-	-	-
662 FG(E) Barrier Fluid 22	H1	-	-	Halal, Kosher
690 FG Lubricant (Aerosol)	H1	178.3620 178.3570	-	-
690 FG Lubricant (Bulk)	H1	178.3620 178.3570	-	-
690 FG(E) Lubricant (Aerosol)	H1	178.3620 178.3570	-	-
690 FG(E) Lubricant (Bulk)	H1	178.3620 178.3570	-	Halal, Kosher
706 Rustsolvo®	H2	-	_	-
706 (E) Rustsolvo®	H2	-		_
715 Spraflex [®]	H2	-	-	_
715 Spraflex [®] (Aerosol)	H2	-	-	-
715 Spraflex [®] Gold	H2	_	-	German Mining 62.12.22.63-2012-3
715 Spraflex [®] Gold (Aerosol)	H2	_	-	German Mining 62.12.22.63-2012-3
715(E) Spraflex [®] Gold (Aerosol)	H2	_	-	German Mining 62.12.22.63-2012-3
715(E) Spraflex [®] Gold (Bulk)	H2	_	-	German Mining 62.12.22.63-2012-3
723 Sprasolvo®	H2	_	-	_
723(E) Sprasolvo®	H2	_	-	_
723 FG Sprasolvo®	H1	172.884 178.3620 178.3650 178.3570	-	_
723 FG(E) Sprasolvo®	H1	172.884 178.3620 178.3650 178.3570	-	-
725 Nickel Anti-Seize Compound	H2	-	MIL-A-907	-
725(E) Nickel Anti-Seize Compound	H2	_	MIL-A-907	-
730 Spragrip®	P1	_	-	German Mining 62.12.22.63-2012-3
730(E) Spragrip®	_		_	German Mining 62.12.22.63-2012-3
740 Heavy-Duty Rust Guard	_	_	MIL-C-16173D Grade 1 and 4	German Mining 62.12.22.63-2012-2
740(E) Heavy-Duty Rust Guard	-	_	MIL-C-16173D Grade 1 and 4	German Mining 62.12.22.63-2012-2

PRODUCT APPROVALS AND CERTIFICATIONS

Product	NSF Category	FDA	Military/Federal Specification	Other
775 Moisture Shield (Aerosol)	H2	_	MIL C 16173D Grade 3	_
775(E) Moisture Shield (Aerosol)	H2	-	MIL C 16173D Grade 3	_
783 ACR	_	-	_	German Mining 62.12.22.63-2012-3
783(E) ACR	_	-	-	German Mining 62.12.22.63-2012-3
785 Parting Lubricant	H2	-	-	_
785(E) Parting Lubricant	H2	-	-	-
785 FG Parting Lubricant	H1	-	-	_
785 FG(E) Parting Lubricant	H1	_	-	-
787 Sliding Paste	H2	_	-	_
800 GoldEnd® Tape	H1, P1	177.1615 177.1550	MIL-T-27730A MIL A-A-58092	UL® Listed USA, ULC Listed Canada, Oxygen Tested per ISO 10297 and ISO 11114-3, Oxygen certified BAM Ref. No. 2-1033/2014E, Certified Food Grade 1935- 2004.
801(E) Industrial and Marine Solvent	A1, A4, A8	-	-	_
803 Industrial and Marine Solvent II	A1	-	-	_
803(E) Industrial and Marine Solvent II	A1	-	_	_
820 KPC	A1	_	-	_
820(E) KPC	A1	-	_	_
860 Mouldable Polymer Gasketing	P1	175.300 177.2600	-	German Mining 62.12.22.63-2012-3
900 GoldEnd® Paste	H2, P1	-	-	UL Listed

Mechanical Seals

Application	Certifications/Approvals	Product
ATEX	ATEX Cat 1 (Group 2) on Wet Applications	280™
ATEX	ATEX Cat 1 (Group 2) on Wet Applications	280M
ATEX	ATEX Cat 1 (Group 2) on Top-Entry Dry Applications	442™
ATEX	ATEX Cat 1 (Group 2) on Top-Entry Dry Applications	491
ATEX	ATEX Cat 1 (Group 2) on Top-Entry Dry Applications	442M™
ATEX	ATEX Cat 1 (Group 2) on Wet Applications	2810
ATEX	ATEX Cat 1 (Group 2) on Wet Applications	2810M
Drinking Water	ACS	150
Drinking Water	ACS, KTW*, WRAS*	491 DINS/ 491 DINL/ 1810 /2810
Drinking Water	ACS	442C [™]
Drinking Water	ACS, KTW*, WRAS*	1810
Food Approval	EC1935-2004	491 DINS / 491 DINL
Food Contact	FDA	280™
Food Contact	FDA	442™
Food Contact	FDA	442C™
Food Contact	FDA	1810
Drinking Water	NSF61	1810
Fugitive Emission Control	TA Luft/VDI 2440	280/1810/2810
Fugitive Emission Control	TA Luft/VDI 2440	4400
Marine	RINA Approval**	442 Family
*Only elastomers and seal faces	**Customer Specification Listing	

Compression Packing

Application	Certifications/Approvals	Product
Drinking Water	WRAS	2212 /1935
Drinking Water	ACS	1725A
Food Contact	EC1935- 2004 - FDA 21 CFR	1935
Food Contact	FDA 21 CFR	1725A
Food Contact	FDA 21 CFR	CMS 2000-FP
Fugitive Emission Control	API-589 (Fire Safe) - API-607 (Fire Safe)	1600
Fugitive Emission Control	API-622 - API-607 (Fire Safe) - TA Luft/VDI 2440 -ISO 15848-1* - Total**- Chevron Texaco**	1622
Fugitive Emission Control	API-589 (Fire Safe)	5800
Fugitive Emission Control	API-589 (Fire Safe)	1400R
Fugitive Emission Control	TA Luft/VDI 2440	1600/477-1 LL
Fugitive Emission Control	TA Luft/VDI 2440	1724/477-1 LL
Fugitive Emission Control	TA Luft/VDI 2440	1724 Low E
Fugitive Emission Control	API-589 (Fire Safe)	5300GTPG / 1600
Fugitive Emission Control	API-589 (Fire Safe)	5800E
Fugitive Emission Control	API-589 (Fire Safe)	5800T
Military	MIL P-24790(SH)	1760
Nuclear	Nuclear 10CFR pt21	1601
Nuclear	Nuclear 10CFR pt21	5800
Nuclear	Nuclear 10CFR pt21	5300GTI / 1601
Oxygen Compatible	BAM Oxygen	1730
Oxygen Compatible	BAM Oxygen	1830
Oxygen Compatible	BAM Oxygen	1400R
Oxygen Compatible	BAM Oxygen	1724-OX

*Valve Test Standard **Customer Specification Listing

Note: The above certifications and compliance are available on request.

PRODUCT APPROVALS AND CERTIFICATIONS

Flange Gaskets

Application	Certifications/Approvals	Product
Drinking Water	DVGW - KTW	553
Drinking Water	DVGW - KTW	455EU
Drinking Water	DVGW	Duragraf F
Drinking Water	DVGW - KTW	Duragraf T
Food Contact	EC1935 - 2004 - FDA 21 CFR	184
Food Contact	EC1935 - 2004 - FDA 21 CFR	185
Food Contact	FDA 21 CFR	ECS-B
Food Contact	EC1935 - 2004 - FDA 21 CFR	ECS-T
Food Contact	FDA 21 CFR	ECS-W
Fugitive Emission Control	API-607 (Fire Safe) - TA Luft/VDI 2440	553
Fugitive Emission Control	Shell Spec MESC SPE 85/203	Duragraf T
Fugitive Emission Control	TA Luft/VDI 2440	ECS-T
Marine	ABS** Approval	ECS-T
Nuclear	Nuclear 10CFR pt21	199
Oxygen Compatible	BAM Oxygen	Duragraf F
Oxygen Compatible	BAM Oxygen	Duragraf T
Oxygen Compatible	BAM Oxygen	ECS-W

Fluid Power - Raw Materials

Application	Certifications/Approvals	Product
Food Contact	EC1935 - 2004 - FDA 21 CFR	AWC510
Food Contact	FDA 21 CFR	AWC520
Food Contact	FDA 21 CFR	AWC600 FDA Polyester TPE
Food Contact	FDA 21 CFR	AWC610
Food Contact	EC1935 - 2004 - FDA 21 CFR	AWC615
Food Contact	FDA 21 CFR	AWC650
Food Contact	FDA 21 CFR	AWC664 Oil Filled Off White Nylon
Food Contact	FDA 21 CFR	AWC703
Food Contact	FDA 21 CFR	AWC716 White FKM
Food Contact	FDA 21 CFR, EU 1935/2004	AWC737
Food Contact	FDA 21 CFR	AWC741
Food Contact	FDA 21 CFR	AWC753
Food Contact	EC1935 - 2004 - FDA 21 CFR	AWC754
Food Contact	FDA 21 CFR	AWC762 White Silicon
Food Contact	FDA 21 CFR	AWC830
Food Contact	FDA 21 CFR, 3A Sanitary, EU 1935/2004, EU 10/2011	AWC839
Marine	ABS** Approval	22KN5 Shaft Seal

**Customer Specification Listing

Note: The above certifications and compliance are available on request.

ARC

Application Area	Certifications/Approvals	Product
Drinking Water	WRAS Approval to 55°C (131°F) (UK Potable Water)	ARC 855(E)
Drinking Water	Israel Potable Water (Israel Standard SI 5452) up to 40°C (104°F)	ARC 855
Drinking Water	WRAS Approval Cold Water (UK Potable Water)	ARC S2(E)
Drinking Water	Global Migration Test – Italian Ministerial Decree no. 174 6/4/2004; (Iren Test Lab)	ARC S2
Drinking Water	Global Migration Test – Italian Ministerial Decree no. 174 6/4/2004; (Iren Test Lab)	ARC CS2(E)
Health and Safety Certificate for use in underground mines	German Underground Mining	ARC 855
Protection of Internal Surfaces	Total GS RC COR 002	ARC HT-S, ARC HT-T
Food Contact	FDA 21 CFR 175.300	ARC MX FG
Food Contact	Tested to Regulation (EC) No. 1935/2004	ARC 791
Food Contact	Tested to Regulation (EC) No. 1935/2004	ARC HT-S(E)
Drinking Water - Joining and Sealing Material	NSF Standard 61 - US Potable Water (Hot Water)	ARC 5ES
Drinking Water - Protective (Barrier) Materials	NSF Standard 61 - US Potable Water (Tanks, Pipes, Pumps, Valves)	ARC S1PW
Drinking Water	KIWA BRL- K759	ARC S2(E)-KIWA
Drinking Water	Swedish Type Approval 1711	ARC S2(E)-KIWA
Metal Repair and Hull Smoothing Types I and II	Mil Spec Approval - MIL-PRF-24176 (QPL-24176)	ARC 10
Metal Repair and Hull Smoothing Types I and II	Mil Spec Approval - MIL-PRF-24176 (QPL-24176)	ARC 858
Concrete Coatings	CE Marking to EN 13813	ARC 791(E) / ARC 988(E) / ARC NVE(E) / ARC EG-1(E)
Concrete Coatings	CE Marking to EN 1504-2	ARC CS2(E) / ARC CS4(E) / ARC S1HB(E)

Ceramic Polymer

Application Area	Certifications/Approvals	Product
Cold Drinking Water Onshore and Offshore	Folke Elsa NO	Ceramic Polymer SF/LF
Marine - Offshore	Norsok M-501, System No. 7B	Proguard M-ST1 & Proguard M-ST2
Marine - Offshore	Norsok M-501, System No. 1	Ceramic Polymer NK C5-1/C5-2/C5-3

**Customer Specification Listing

Note: The above certifications and compliance are available on request.

NOTES

NOTES

Elgiloy[®] is a registered trademark of Elgiloy Specialty Metals, a division of Combined Metals of Chicago.

Fisher[®] is a registered trademark of Emerson Electric Co.

Masoneilan® is a registered trademark of General Electric Company.

Monel® is a registered trademark of Special Metals Corporation.

NSF® is a registered trademark of NSF International.

SpiralTrac[®] is a registered trademark of EnviroSeal Engineering Products Ltd.

UL® is a registered trademark of UL LLC.

Valtek[®] is a registered trademark of Valtek Valves and Tubes Corp.

Warman® is a registered trademark of Weir Minerals.

CHESTERTON® DualPac®, GoldEnd®, Rustsolvo®, SpeedSeal®, Spraflex®, and Sprasolvo® are registered trademarks of A.W. Chesterton Company.

Chesterton Connect[™], Axius[™], ViewIn[™], 8K[™], 20K[™], 280[™], 442[™]C, Flow Guardian[™], Intelli-Flow[™], Lubri-Cup[™], QBT[™], Steel Trap[™], and SuperSet[™] are trademarks of A.W. Chesterton Company.

All statements in this catalogue pertaining to pressure, chemical compatibility, temperature, and service ratings are based on general service experience. Because of the wide variety of applications of our products, the broad range of products available, and the wide range of equipment conditions encountered, together with the unpredictable human factors involved in the installation of these products by the ultimate user, you should not follow recommendations shown without specific prior service experience or consultation with an authorized Chesterton representative.

Specific data on materials, construction methods, installation, and troubleshooting procedures are subject to change without notice.

Performance is closely associated with the process operating conditions and equipment conditions. Technical data reflects results of laboratory tests and is intended to indicate general characteristics only. A.W. CHESTERTON COMPANY DISCLAIMS ALL WARRANTIES EXPRESSED, OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR USE. LIABILITY, IF ANY, IS LIMITED TO PRODUCT REPLACEMENT ONLY.

GLOBAL SOLUTIONS, LOCAL SERVICE

Since its founding in 1884, A.W. Chesterton Company has successfully met the critical needs of its diverse customer base. Today, as always, customers count on Chesterton solutions to increase equipment reliability, optimize energy consumption, and provide local technical support and service wherever they are in the world. Chesterton's global capabilities include:

- Servicing plants in over 113 countries
- Global manufacturing operations
- More than 500 Centres and Sales Offices worldwide
- Over 1 200 trained local Service Specialists and Technicians

Chesterton products and services are available through the sales offices listed below, and through our network of authorized distributors. To find a service location near you, please visit chesterton.com.

Chesterton EME

Chesterton Offices and Facilities

Chesterton International GmbH Am Lenzenfleck 23 DE-85737 Ismaning Deutschland Telephone: +49-89-9965-46-0 Fax: +49-89-9965-46-60 Munich@Chesterton.com aw-chesterton.de

Chesterton International GmbH Betriebsstätte Rödinghausen, Daimlerring 9 DE-32289 Rödinghausen Deutschland Telephone: +49-5223-96276-0 Fax: +49-5223-96276-17 roedinghausen@chesterton.com aw-chesterton.de Chesterton Italia S.r.l. Via Lussemburgo, 6 21013 Gallarate (VA) Italia Telephone: +39 0331291059 roma@chesterton.com aw-chesterton.it

Chesterton ČR s.r.o. Masarykova č.p. 56 588 56 Telč Česká Republika Telephone: +420-567-213-095 Fax: +420-567-213-007 info.cz@chesterton.com chesterton.cz Chesterton Hungary KFT Határ út 3. 5. épület 2119 Pécel Hungary Telephone: +36-28-540-450 Fax: +36-28-540-455 chesterton.hungary@chesterton.com chesterton.hu

Chesterton Sweden AB Tubba Torg 5 SE-37432 Karlshamn Sverige Telephone: +46-454-88202 Fax: +46-454-19890 Chesterton.Sweden@chesterton.com aw-chesterton.se Chesterton International Polska Sp. z o.o. Al. W. Korfantego 191 40 - 153 Katowice Polska Telephone: +48-32-249-5290 Fax: +48-32-249-5650 sekretariat@chesterton.com.pl chesterton.com.pl

Chesterton ISO certificates available on chesterton.com/corporate/iso

Distributed by:

© 2022 A.W. Chesterton Company. ® Registered trademark owned and licensed by A.W. Chesterton Company in USA and other countries, unless otherwise noted.

A.W. Chesterton Company 860 Salem Street Groveland, MA 01834 USA

Telephone: (+1) 781-438-7000 Fax: (+1) 978-469-6528 chesterton.com Form No. EN22412 EMEA Catalogue – English 2/22